Superfluid Fraction in an Interacting Spatially Modulated Bose-Einstein Condensate

Phys. Rev. Lett. 130, 226003 (2023)
arXiv:2302.01776
SFP 2023

CHAUVEAU Guillaume
7th July

Laboratoire Kastler Brossel - Paris

Superfluidity: a hallmark of quantum many-body systems

Some characteristics

Superfluidity: a hallmark of quantum many-body systems

Some characteristics

- Non-viscous flow around impurity for $v<v_{c}$

(Desbuquois et al., 2012), (Raman et al., 2001)

Superfluidity: a hallmark of quantum many-body systems

Some characteristics

- Two sound modes

(Christodoulou et al., 2021)

Superfluidity: a hallmark of quantum many-body systems

Some characteristics

- Two sound modes

(Christodoulou et al., 2021)
- Quantized angular momentum: vortices

Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?
\Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density $\rho=\rho_{n}+\rho_{s}$
Superfluid fraction $f_{s}=\rho_{s} / \rho$

Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?
\Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density $\rho=\rho_{n}+\rho_{s}$
Superfluid fraction $f_{s}=\rho_{s} / \rho$

- Galilean invariance $f_{s}(T=0)=1$
(Leggett, 1998)
- $f_{s}<1$ for $T>0$ and uniform system
\rightarrow already studied

(Sidorenkov et al., 2013)

Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?
\Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density $\rho=\rho_{n}+\rho_{s}$
Superfluid fraction $f_{s}=\rho_{s} / \rho$

- Galilean invariance $f_{s}(T=0)=1$
(Leggett, 1998)
- $f_{s}<1$ for $T>0$ and uniform system
\rightarrow already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?
\Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density $\rho=\rho_{n}+\rho_{s}$
Superfluid fraction $f_{s}=\rho_{s} / \rho$

- Galilean invariance $f_{s}(T=0)=1$
(Leggett, 1998)
- $f_{s}<1$ for $T>0$ and uniform system
\rightarrow already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: $T=0$

Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?

Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?
\Rightarrow In general, only an upper bound given by Leggett's formula (in Can a solid be a superfluid?) (Legeett, 1970):

$$
f_{s} \leq\left(\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}\right)
$$

Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?
\Rightarrow In general, only an upper bound given by Leggett's formula (in Can a solid be a superfluid?) (Legeett, 1970):

$$
f_{s} \leq\left(\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}\right)
$$

In the case of weakly interacting Bose gas at $T=0$, with separable density, i.e. $\rho(x, y, z)=\rho_{x}(x) \rho_{y}(y) \rho_{z}(z)$, we showed:

Saturation of Leggett's formula

$$
f_{s}=\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}
$$

Superfluidity and density modulation

The superfluid fraction is reduced due to the density modulation
Break translational invariance along 1
direction with 1D periodic potential
$V(x)=V_{0} \cos (q x)$

Superfluidity and density modulation

The superfluid fraction is reduced due to the density modulation
Break translational invariance along 1 direction with 1D periodic potential
$V(x)=V_{0} \cos (q x)$

\Rightarrow Expect reduction of f_{s}

Measurement of superfluid fraction

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_{0}, with two different methods:

Measurement of superfluid fraction

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_{0}, with two different methods:

- Dynamic measurement: excite the cloud and measure its response to density perturbation (oscillation at speed of sound frequency)

Measurement of superfluid fraction

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_{0}, with two different methods:

- Dynamic measurement: excite the cloud and measure its response to density perturbation (oscillation at speed of sound frequency)
- Static measurement: measure density and apply Leggett's formula

Our experimental platform

Dynamic measurement of f_{s}

- For a given V_{0}, we shake the BEC along x
- We measure the frequency of the standing wave created by this perturbation ν_{x}
- Speed of sound $c_{x}=2 L_{x} \nu_{x}$
- We do the same but excitation along y and extract c_{y}
- We repeat these 2 measurements for another V_{0}

$$
\begin{aligned}
& \text { Speed of sound } \\
& \text { measurement of } f_{s} \\
& \qquad f_{s, x}=\frac{c_{x}^{2}}{c_{y}^{2}}=\frac{\nu_{x}^{2}}{\nu_{y}^{2}}
\end{aligned}
$$

Dynamic measurement of f_{s}

Center of mass oscillations

Oscillations fit by: $\langle x, y\rangle=e^{-\Gamma t}\left[A \cos \left(2 \pi \nu_{x, y} t\right)+B \sin \left(2 \pi \nu_{x, y} t\right)\right]$

Dynamic measurement of f_{s}

Center of mass oscillations

Oscillations fit by: $\langle x, y\rangle=e^{-\Gamma t}\left[A \cos \left(2 \pi \nu_{x, y} t\right)+B \sin \left(2 \pi \nu_{x, y} t\right)\right]$

Dynamic measurement of f_{s}

Center of mass oscillations

$$
V_{0}=0: \nu_{x} \simeq \nu_{y}
$$

$V_{0}>0: \nu_{x}<\nu_{y}$

Solid lines: GP simulations

Dynamic measurement of f_{s}

$$
f_{s, x}=\frac{\nu_{x}^{2}}{\nu_{y}^{2}}
$$

Static measurement of f_{s}

Naive way

Measure ρ, fit with a sine wave and deduce

$$
f_{s}=\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}=\left(1-\frac{\rho_{1}^{2}}{\rho_{0}^{2}}\right)^{\frac{1}{2}}
$$

Static measurement of f_{s}

Naive way

Measure ρ, fit with a sine wave and deduce

$$
f_{s}=\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}=\left(1-\frac{\rho_{1}^{2}}{\rho_{0}^{2}}\right)^{\frac{1}{2}}
$$

More elaborate way
Higher harmonics take importance for large V_{0} and we expand ρ in Fourier modes.

Ideal world infinite imaging resolution

$$
\rho(x)=\rho_{0}-\sum_{n>0} \rho_{n} \cos (n q x)
$$

Static measurement of f_{s}

Naive way

Measure ρ, fit with a sine wave and deduce

$$
f_{s}=\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}=\left(1-\frac{\rho_{1}^{2}}{\rho_{0}^{2}}\right)^{\frac{1}{2}}
$$

More elaborate way
Higher harmonics take importance for large V_{0} and we expand ρ in Fourier modes. Finite imaging resolution \Rightarrow spatial filtering of the harmonics

Ideal world infinite imaging resolution

$$
\rho(x)=\rho_{0}-\sum_{n>0} \rho_{n} \cos (n q x)
$$

Real world finite imaging resolution

$$
\begin{gathered}
\rho^{(\text {meas })}(x)=\rho_{0}-\sum_{n>0} \beta_{n} \rho_{n} \cos (n q x) \\
\beta_{1}=0.73 \\
\beta_{2}=0.27 \\
\forall i \geq 3, \beta_{i}=0
\end{gathered}
$$

Static measurement of f_{s}

$\underline{\text { Reconstruction of } \rho(x)}$

Red: first harmonic; green: second harmonic. Solid lines: GP predictions

Static measurement of f_{s}

$$
f_{s}=\frac{1}{\langle\rho(x)\rangle\langle 1 / \rho(x)\rangle}
$$

Static measurement of f_{s}

$$
f_{s}=\frac{1}{\langle\rho(x)\rangle\langle 1 / \rho(x)\rangle}
$$

Solid line: GP prediction

Summarizing results

Summarizing results

Summarizing results

Summarizing results

Summarizing results

Thanks!

Phys. Rev. Lett. 130, 226003 (2023)

Santo Maria Roccuzzo

Sandro
Stringari

BRETIN, Vincent; STOCK, Sabine; SEURIN, Yannick; DALIBARD, Jean, 2004. Fast Rotation of a Bose-Einstein Condensate. Physical Review Letters. Vol. 92, no. 5, pp. 050403-. Available from Doi: 10.1103/PhysRevLett.92.050403.

國 CHRISTODOULOU, Panagiotis; GAŁKA, Maciej; DOGRA, Nishant; LOPES, Raphael; SCHMITT, Julian; HADZIBABIC, Zoran, 2021. Observation of first and second sound in a BKT superfluid. Nature. Vol. 594, no. 7862, pp. 191-194. Available from doi: 10.1038/s41586-021-03537-9. Number: 7862 Publisher: Nature Publishing Group.
DESBUQUOIS, Rémi; CHOMAZ, Lauriane; YEFSAH, Tarik; LÉONARD, Julian; BEUGNON, Jérôme; WEITENBERG, Christof; DALIBARD, Jean, 2012. Superfluid behaviour of a two-dimensional Bose gas. Nature Physics. Vol. 8, no. 9, pp. 645-648. Available from doi: 10.1038/nphys2378. Number: 9 Publisher: Nature Publishing Group.
R. LANDAU, L., 1941. Theory of the Superfluidity of Helium II. Phys. Rev. Vol. 60, pp. 356-358. Available from Doi: 10.1103/PhysRev.60.356.
國 LEGGETT, A. J., 1970. Can a Solid Be "Superfluid"? Physical Review Letters. Vol. 25, no. 22, pp. 1543-1546. Available from DOI: 10.1103/PhysRevLett.25.1543. Publisher: American Physical Society.

围 LEGGETT, A. J., 1998. On the Superfluid Fraction of an Arbitrary Many-Body System at T=0. Journal of Statistical Physics. Vol. 93, no. 3, pp. 927-941. Available from DOI: 10.1023/B:JOSS.0000033170.38619.6c.

RAMAN, C.; ONOFRIO, R.; VOGELS, J. M.; ABO-SHAEER, J. R.; KETTERLE, W., 2001. Dissipationless Flow and Superfluidity in Gaseous Bose-Einstein Condensates. Journal of Low Temperature Physics. Vol. 122, no. 1, pp. 99-116. Available from DoI: 10.1023/A:1004864820016.

SIDORENKOV, Leonid A.; TEY, Meng Khoon; GRIMM, Rudolf; HOU, Yan-Hua; PITAEVSKII, Lev; STRINGARI, Sandro, 2013. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature. Vol. 498, no. 7452, pp. 78-81. Available from doi: 10.1038/nature12136.

Theory - Saturation of Leggett's formula

- $f_{5, \times}$ calculated by applying the perturbation $-v_{0} \hat{P}_{\times}$to the system

$$
\begin{equation*}
f_{s, x}=1-\lim _{v_{0} \rightarrow 0} \frac{\left\langle\hat{P}_{x}\right\rangle}{N m v_{0}} \tag{1}
\end{equation*}
$$

- equation of continuity:

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}+\frac{\partial}{\partial x}\left[\rho(x, t)\left(v(x, t)-v_{0}\right)\right]=0 \tag{2}
\end{equation*}
$$

- stationary solution in the moving frame

$$
\Rightarrow f_{s}=\frac{1}{\langle\rho\rangle\langle 1 / \rho\rangle}
$$

Theory - Effective mass

Equivalently, one can apply twisted boundary conditions and look at the evolution of energy:

$$
\begin{gather*}
\psi(L)=\psi(0) e^{i \theta} \tag{3}\\
E(\theta) \simeq E(0)+N f_{s, x} \frac{\hbar^{2} \theta^{2}}{2 m L^{2}} \tag{4}
\end{gather*}
$$

Look for solutions written as Bloch functions:

$$
\begin{align*}
E(k) & \simeq E(0)+N \frac{\hbar^{2} k^{2}}{2 m_{x}^{*}} \tag{5}\\
& \Rightarrow f_{s, x}=\frac{m}{m_{x}^{*}}
\end{align*}
$$

Theory - Speed of sound

In the presence of $V(x)$, the velocity of a sound wave propagating along x is:

$$
\begin{equation*}
c_{x}^{2}=\frac{1}{m_{x}^{*} \kappa} \tag{6}
\end{equation*}
$$

with $\kappa=\frac{1}{\rho_{0} \frac{\partial \mu\left(\rho_{0}\right)}{\partial \rho_{0}}}$.
And along y :

$$
\begin{align*}
& c_{y}^{2}=\frac{1}{m \kappa} \tag{7}\\
& f_{s, x}=\frac{m}{m_{x}^{*}}=\frac{c_{x}^{2}}{c_{y}^{2}} \tag{8}\\
& f_{s, y}=\frac{m}{m_{y}^{*}}=1 \tag{9}
\end{align*}
$$

Theory - Limit of small V_{0}

We expand the solution of the GPE in powers of V_{0}. It yields:

$$
\begin{gather*}
\frac{\rho_{1}}{\rho_{0}}=\frac{2 V_{0}}{2 \mu_{0}+\epsilon_{q}}+\mathcal{O}\left(V_{0}^{3}\right) \tag{10}\\
f_{s, x}=1-\frac{2 V_{0}^{2}}{\left(2 \mu_{0}+\epsilon_{q}\right)^{2}}+\mathcal{O}\left(V_{0}^{4}\right) \tag{11}\\
\kappa=\mu_{0}^{-1}\left[1-\frac{2 V_{0}^{2} \epsilon_{q}}{\left(2 \mu_{0}+\epsilon_{q}\right)^{3}}\right]+\mathcal{O}\left(V_{0}^{4}\right) \tag{12}
\end{gather*}
$$

Experiment - Full graph

