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Superfluidity: a hallmark of quantum many-body systems

Some characteristics

▶ Non-viscous flow around
impurity for v < vc

(Desbuquois et al., 2012), (Raman et al., 2001)

▶ Two sound modes
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(Christodoulou et al., 2021)

▶ Quantized angular momentum: vortices

(Bretin et al., 2004)
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Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density ρ = ρn + ρs

Superfluid fraction fs = ρs/ρ

▶ Galilean invariance fs (T = 0) = 1
(Leggett, 1998)

▶ fs < 1 for T > 0 and uniform system
→ already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T = 0

3/20



Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density ρ = ρn + ρs

Superfluid fraction fs = ρs/ρ

▶ Galilean invariance fs (T = 0) = 1
(Leggett, 1998)

▶ fs < 1 for T > 0 and uniform system
→ already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T = 0

3/20



Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density ρ = ρn + ρs

Superfluid fraction fs = ρs/ρ

▶ Galilean invariance fs (T = 0) = 1
(Leggett, 1998)

▶ fs < 1 for T > 0 and uniform system
→ already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T = 0

3/20



Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density ρ = ρn + ρs

Superfluid fraction fs = ρs/ρ

▶ Galilean invariance fs (T = 0) = 1
(Leggett, 1998)

▶ fs < 1 for T > 0 and uniform system
→ already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T = 0

3/20



Superfluidity: a hallmark of quantum many-body systems

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density ρ = ρn + ρs

Superfluid fraction fs = ρs/ρ

▶ Galilean invariance fs (T = 0) = 1
(Leggett, 1998)

▶ fs < 1 for T > 0 and uniform system
→ already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T = 0

3/20



Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?

⇒ In general, only an upper bound given by Leggett’s formula (in Can a solid
be a superfluid?) (Leggett, 1970):

fs ≤
(

1
⟨ρ⟩⟨1/ρ⟩

)
In the case of weakly interacting Bose gas at T = 0, with separable density, i.e.
ρ(x , y , z) = ρx (x)ρy (y)ρz(z), we showed:

Saturation of Leggett’s formula

fs = 1
⟨ρ⟩⟨1/ρ⟩

4/20



Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?

⇒ In general, only an upper bound given by Leggett’s formula (in Can a solid
be a superfluid?) (Leggett, 1970):

fs ≤
(

1
⟨ρ⟩⟨1/ρ⟩

)

In the case of weakly interacting Bose gas at T = 0, with separable density, i.e.
ρ(x , y , z) = ρx (x)ρy (y)ρz(z), we showed:

Saturation of Leggett’s formula

fs = 1
⟨ρ⟩⟨1/ρ⟩

4/20



Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?

⇒ In general, only an upper bound given by Leggett’s formula (in Can a solid
be a superfluid?) (Leggett, 1970):

fs ≤
(

1
⟨ρ⟩⟨1/ρ⟩

)
In the case of weakly interacting Bose gas at T = 0, with separable density, i.e.
ρ(x , y , z) = ρx (x)ρy (y)ρz(z), we showed:

Saturation of Leggett’s formula

fs = 1
⟨ρ⟩⟨1/ρ⟩

4/20



Superfluidity and density modulation

The superfluid fraction is reduced due to the density modulation

Break translational invariance along 1
direction with 1D periodic potential
V (x) = V0 cos(qx)

0

V0

x

V (x)

x

ρ

⇒ Expect reduction of fs

0

1

µ

Independent
superfluids

V0

fs

µ: chemical potential
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Measurement of superfluid fraction

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V0, with two different methods:

▶ Dynamic measurement: excite the cloud and measure its response to
density perturbation (oscillation at speed of sound frequency)

▶ Static measurement: measure density and apply Leggett’s formula
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Our experimental platform

▶ 87 Rb atoms (bosons)

▶ Planar BEC

▶ In-plane confinement: box-like
potential of size Lx = Ly = 40 µm

▶ Periodic potential: optical lattice
of period d = 4 µm ⇒ break
translational invariance

Absorption image
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Dynamic measurement of fs

y

x

▶ For a given V0, we shake the BEC along x
▶ We measure the frequency of the standing wave

created by this perturbation νx

▶ Speed of sound cx = 2Lxνx

▶ We do the same but excitation along y and extract cy

▶ We repeat these 2 measurements for another V0

Speed of sound
measurement of fs

fs,x = c2
x

c2
y

= ν2
x

ν2
y

8/20



Dynamic measurement of fs

Center of mass oscillations
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Oscillations fit by: ⟨x , y⟩ = e−Γt [A cos(2πνx,y t) + B sin(2πνx,y t)]
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Dynamic measurement of fs
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Dynamic measurement of fs

fs,x = ν2
x

ν2
y
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Speed of sound
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Static measurement of fs

Naive way

Measure ρ, fit with a sine wave and
deduce

fs = 1
⟨ρ⟩⟨1/ρ⟩

=
(

1 − ρ2
1

ρ2
0

) 1
2

More elaborate way
Higher harmonics take importance for large V0 and we expand ρ in Fourier
modes.

Ideal world infinite imaging
resolution

ρ(x) = ρ0 −
∑
n>0

ρn cos(nqx)

Real world finite imaging resolution

ρ(meas)(x) = ρ0 −
∑
n>0

βnρn cos(nqx)

β1 = 0.73
β2 = 0.27

∀i ≥ 3, βi = 0
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(
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1

ρ2
0

) 1
2

More elaborate way
Higher harmonics take importance for large V0 and we expand ρ in Fourier
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Static measurement of fs

Reconstruction of ρ(x)
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Static measurement of fs

fs = 1
⟨ρ(x)⟩⟨1/ρ(x)⟩
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Summarizing results
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Outlook: Fermi gases, supersolids
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Thanks!

Phys. Rev. Lett. 130, 226003 (2023) arXiv:2302.01776

Santo Maria Roccuzzo

Sandro
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Theory - Saturation of Leggett’s formula

▶ fs,x calculated by applying the perturbation −v0P̂x to the system

fs,x = 1 − lim
v0→0

⟨P̂x ⟩
Nmv0

(1)

▶ equation of continuity:

∂ρ(x , t)
∂t + ∂

∂x [ρ(x , t)(v(x , t) − v0)] = 0 (2)

▶ stationary solution in the moving frame

⇒ fs = 1
⟨ρ⟩⟨1/ρ⟩
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Theory - Effective mass

Equivalently, one can apply twisted boundary conditions and look at the
evolution of energy:

▶

ψ(L) = ψ(0)e iθ (3)
▶

E(θ) ≃ E(0) + Nfs,x
ℏ2θ2

2mL2 (4)

Look for solutions written as Bloch functions:

E(k) ≃ E(0) + N ℏ2k2

2m∗
x

(5)

⇒ fs,x = m
m∗

x
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Theory - Speed of sound

In the presence of V (x), the velocity of a sound wave propagating along x is:

c2
x = 1

m∗
xκ

(6)

with κ = 1
ρ0

∂µ(ρ0)
∂ρ0

.

And along y :

c2
y = 1

mκ (7)

▶

fs,x = m
m∗

x
= c2

x

c2
y

(8)

▶

fs,y = m
m∗

y
= 1 (9)
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Theory - Limit of small V0

We expand the solution of the GPE in powers of V0. It yields:

▶
ρ1

ρ0
= 2V0

2µ0 + ϵq
+ O(V 3

0 ) (10)

▶

fs,x = 1 − 2V 2
0

(2µ0 + ϵq)2 + O(V 4
0 ) (11)

▶

κ = µ−1
0

[
1 − 2V 2

0 ϵq

(2µ0 + ϵq)3

]
+ O(V 4

0 ) (12)
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Experiment - Full graph
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