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» Quantized angular momentum: vortices

(Bretin et al., 2004)
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How to describe a superfluid?

= Landau Two-fluid model (Landau, 1941): two interpenetrable parts.
Total density p = pn + ps
Superfluid fraction fs = ps/p

» Galilean invariance (T =0) =1
(Leggett, 1998)

» f, <1 for T >0 and uniform system
— already studied 00 02 0 0% 08 10

I,

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid) ?

Our work: T =0
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Superfluidity and density modulation

How to link the superfluid fraction to the density modulation?

= In general, only an upper bound given by Leggett's formula (in Can a solid

1
2= <<p><1/p>>

be a superfluid?) (Leggett, 1970):

In the case of weakly interacting Bose gas at T = 0, with separable density, i.e.

p(x, ¥:2) = px(x)py (¥)p=(2), we showed:

Saturation of Leggett’s formula
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Superfluidity and density modulation

The superfluid fraction is reduced due to the density modulation

Break translational invariance along 1

direction with 1D periodic potential

V(x) = V, cos(gx)

V(z)
Vo
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Superfluidity and density modulation

The superfluid fraction is reduced due to the density modulation

Break translational invariance along 1

direction with 1D periodic potential = Expect reduction of f
V(x) = V, cos(gx)

V(x) fs
Vo '

Independent
superfluids

Vo

p: chemical potential
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Measurement of superfluid fraction

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different Vo, with two different methods:

» Dynamic measurement: excite the cloud and measure its response to
density perturbation (oscillation at speed of sound frequency)

> Static measurement: measure density and apply Leggett's formula
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Our experimental platform

> 8 Rb atoms (bosons)
» Planar BEC

» In-plane confinement: box-like

potential of size Ly = L, =40pm

» Periodic potential: optical lattice
of period d = 4 pm = break
translational invariance

\ Absorption image

T
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Dynamic measurement of f;

T

» For a given V, we shake the BEC along x

» We measure the frequency of the standing wave
created by this perturbation vy

» Speed of sound ¢ = 2L v«

» We do the same but excitation along y and extract ¢,

» We repeat these 2 measurements for another Vg

Speed of sound
measurement of f;

< _ v
=7

f:SX:

B

8/20



Dynamic measurement of f;

Center of mass oscillations

(z,y) (1m)
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Vo=0:v,>v,

Oscillations fit by: (x,y) = e " [Acos(2nvy ,t) + Bsin(27muy ,t)]
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Center of mass oscillations
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Dynamic measurement of f;

Center of mass oscillations
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Dynamic measurement of f;
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Static measurement of f;

Naive way

— 120 F ‘ = Measure p, fit with a sine wave and
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Static measurement of f;

Naive way
— 120 F ‘ = Measure p, fit with a sine wave and
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More elaborate way

Higher harmonics take importance for large Vo and we expand p in Fourier
modes.

Ideal world infinite imaging
resolution

p(x) = po— > pn cos(ngx)

n>0
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Static measurement of f;

Naive way

L

More elaborate way

plmess
[=2]
e
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2,y (pixels)

Measure p, fit with a sine wave and

deduce

Higher harmonics take importance for large Vo and we expand p in Fourier

modes. Finite imaging resolution = spatial filtering of the harmonics

Ideal world infinite imaging

resolution
p(x) = po — > pncos(nax)
n>0

Real world finite imaging resolution

A" x) = po = D Bupn cos(ngx)

n>0
£ =0.73
B2 = 0.27

Viz3,6i=0
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Static measurement of £,

Reconstruction of p(x)
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Static measurement of £,
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Static measurement of £,
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Summarizing results
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Summarizing results
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Outlook: Fermi gases, supersolids
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Thanks!
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Theory - Saturation of Leggett’s formula

» f; « calculated by applying the perturbation —woPy to the system

N

1 e (P
=1 VLITO Nmvo (1)
» equation of continuity:
Op(x,t) 0 -
VL 1 Lo, £)(v(x, 1) — w)] = 0 @)

» stationary solution in the moving frame
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Theory - Effective mass

Equivalently, one can apply twisted boundary conditions and look at the
evolution of energy:

>
(L) = (0)e” (3)
> 202
h°0
E0) ~ E Nfsx —— 4
(0) =~ E(0) + Ny )
Look for solutions written as Bloch functions:
k3
E(k) ~ E(0) + N2m* (5)

:>fs,x:
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Theory - Speed of sound

In the presence of V/(x), the velocity of a sound wave propagating along x is:

. _ 1
with Kk = ~—Bulpo) *
9po
And along y:
>
>

(6)

(7)
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Theory - Limit of small

We expand the solution of the GPE in powers of V. It yields:

| g

p1 2Vo 3
2o 1o
o 2poteq (V)
> 2
2\/0 4
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* T Gty O
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Experiment - Full graph
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