Superfluid Fraction in an Interacting Spatially Modulated Bose-Einstein Condensate

Phys. Rev. Lett. 130, 226003 (2023)

arXiv:2302.01776

SFP 2023

CHAUVEAU Guillaume

7th July

Laboratoire Kastler Brossel - Paris

Some characteristics

Some characteristics

 Non-viscous flow around impurity for v < v_c

(Desbuquois et al., 2012), (Raman et al., 2001)

Some characteristics

 Non-viscous flow around impurity for v < v_c

(Desbuquois et al., 2012), (Raman et al., 2001)

Two sound modes

(Christodoulou et al., 2021)

Some characteristics

 Non-viscous flow around impurity for v < v_c

Two sound modes

(Desbuquois et al., 2012), (Raman et al., 2001)

(Christodoulou et al., 2021)

Quantized angular momentum: vortices

How to describe a superfluid?

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts. Total density $\rho = \rho_n + \rho_s$ Superfluid fraction $f_s = \rho_s / \rho$

How to describe a superfluid?

⇒ Landau Two-fluid model (Landau, 1941): two interpenetrable parts. Total density $\rho = \rho_n + \rho_s$ Superfluid fraction $f_s = \rho_s / \rho$

- Galilean invariance f_s (T = 0) = 1 (Leggett, 1998)
- ▶ f_s < 1 for T > 0 and uniform system
 → already studied

(Sidorenkov et al., 2013)

How to describe a superfluid?

 \Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.

Total density $\rho = \rho_n + \rho_s$ Superfluid fraction $f_s = \rho_s / \rho$

- ► Galilean invariance f_s (T = 0) = 1 (Leggett, 1998)
- F_s < 1 for T > 0 and uniform system → already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid)?

How to describe a superfluid?

 \Rightarrow Landau Two-fluid model (Landau, 1941): two interpenetrable parts.

Total density $\rho = \rho_n + \rho_s$ Superfluid fraction $f_s = \rho_s / \rho$

- ► Galilean invariance f_s (T = 0) = 1 (Leggett, 1998)
- F_s < 1 for T > 0 and uniform system → already studied

(Sidorenkov et al., 2013)

What happens if the translational invariance is broken (e.g. solid)?

Our work: T = 0

How to link the superfluid fraction to the density modulation?

How to link the superfluid fraction to the density modulation?

 \Rightarrow In general, only an upper bound given by Leggett's formula (in *Can a solid be a superfluid*?) (Leggett, 1970):

$$f_{s} \leq \left(rac{1}{\langle
ho
angle \langle 1/
ho
angle}
ight)$$

How to link the superfluid fraction to the density modulation?

 \Rightarrow In general, only an upper bound given by Leggett's formula (in *Can a solid be a superfluid*?) (Leggett, 1970):

$$f_s \leq \left(rac{1}{\langle
ho
angle \langle 1/
ho
angle}
ight)$$

In the case of weakly interacting Bose gas at T = 0, with separable density, *i.e.* $\rho(x, y, z) = \rho_x(x)\rho_y(y)\rho_z(z)$, we showed:

Saturation of Leggett's formula

$$f_s = rac{1}{\langle
ho
angle \langle 1/
ho
angle}$$

The superfluid fraction is reduced due to the density modulation

The superfluid fraction is reduced due to the density modulation

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_0 , with two different methods:

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_0 , with two different methods:

Dynamic measurement: excite the cloud and measure its response to density perturbation (oscillation at speed of sound frequency)

How to measure this reduction of superfluid fraction?

Superfluid fraction measured for different V_0 , with two different methods:

- Dynamic measurement: excite the cloud and measure its response to density perturbation (oscillation at speed of sound frequency)
- Static measurement: measure density and apply Leggett's formula

Our experimental platform

- ⁸⁷ Rb atoms (bosons)
- Planar BEC
- In-plane confinement: box-like potential of size L_x = L_y = 40 μm
- Periodic potential: optical lattice of period d = 4 µm ⇒ break translational invariance

- For a given V_0 , we shake the BEC along x
- We measure the frequency of the standing wave created by this perturbation ν_x
- Speed of sound $c_x = 2L_x\nu_x$
- We do the same but excitation along y and extract cy
- We repeat these 2 measurements for another V_0

Speed of sound measurement of f_s $f_{s,x} = \frac{c_x^2}{c_y^2} = \frac{\nu_x^2}{\nu_y^2}$

Center of mass oscillations

Oscillations fit by: $\langle x, y \rangle = e^{-\Gamma t} \left[A \cos(2\pi \nu_{x,y} t) + B \sin(2\pi \nu_{x,y} t) \right]$

Center of mass oscillations

Oscillations fit by: $\langle x, y \rangle = e^{-\Gamma t} \left[A \cos(2\pi \nu_{x,y} t) + B \sin(2\pi \nu_{x,y} t) \right]$

Center of mass oscillations

$$V_0 = 0 : \nu_x \simeq \nu_y$$

 $V_0 > 0 : \nu_x < \nu_y$

Solid lines: GP simulations

$$f_{s,x} = \frac{\nu_x^2}{\nu_y^2}$$

Naive way

Measure $\rho,$ fit with a sine wave and deduce

$$f_{s}=rac{1}{\langle
ho
angle\langle1/
ho
angle}=\left(1-rac{
ho_{1}^{2}}{
ho_{0}^{2}}
ight)^{rac{1}{2}}$$

Naive way

Measure $\rho,$ fit with a sine wave and deduce

$$f_s = rac{1}{\langle
ho
angle \langle 1/
ho
angle} = \left(1 - rac{
ho_1^2}{
ho_0^2}
ight)^{rac{1}{2}}$$

More elaborate way

Higher harmonics take importance for large V_0 and we expand ρ in Fourier modes.

Ideal world infinite imaging resolution

$$\rho(x) = \rho_0 - \sum_{n>0} \rho_n \cos(nqx)$$

Naive way

Measure $\rho,$ fit with a sine wave and deduce

$$f_s = rac{1}{\langle
ho
angle \langle 1/
ho
angle} = \left(1 - rac{
ho_1^2}{
ho_0^2}
ight)^{rac{1}{2}}$$

More elaborate way

Higher harmonics take importance for large V_0 and we expand ρ in Fourier modes. Finite imaging resolution \Rightarrow spatial filtering of the harmonics

Ideal world infinite imaging resolution

$$\rho(x) = \rho_0 - \sum_{n>0} \rho_n \cos(nqx)$$

Real world finite imaging resolution

$$\rho^{(\text{meas})}(x) = \rho_0 - \sum_{n>0} \frac{\beta_n \rho_n \cos(nqx)}{\beta_1 = 0.73}$$
$$\beta_2 = 0.27$$
$$\forall i \ge 3, \beta_i = 0$$

11/20

Reconstruction of $\rho(x)$

Red: first harmonic; green: second harmonic. Solid lines: GP predictions

Static measurement of *f*_s

$$f_s = rac{1}{\langle
ho(x) \rangle \langle 1/
ho(x)
angle}$$

$$f_s = rac{1}{\langle
ho(x)
angle \langle 1/
ho(x)
angle}$$

Solid line: GP prediction

Outlook: Fermi gases, supersolids

Thanks!

Phys. Rev. Lett. 130, 226003 (2023)

arXiv:2302.01776

Santo Maria Roccuzzo

Sandro Stringari

- BRETIN, Vincent; STOCK, Sabine; SEURIN, Yannick; DALIBARD, Jean, 2004. Fast Rotation of a Bose-Einstein Condensate. *Physical Review Letters*. Vol. 92, no. 5, pp. 050403–. Available from DOI: 10.1103/PhysRevLett.92.050403.
 - CHRISTODOULOU, Panagiotis; GAŁKA, Maciej; DOGRA, Nishant;
 LOPES, Raphael; SCHMITT, Julian; HADZIBABIC, Zoran, 2021.
 Observation of first and second sound in a BKT superfluid. *Nature*. Vol. 594, no. 7862, pp. 191–194. Available from DOI: 10.1038/s41586-021-03537-9.
 Number: 7862 Publisher: Nature Publishing Group.
- DESBUQUOIS, Rémi; CHOMAZ, Lauriane; YEFSAH, Tarik; LÉONARD, Julian; BEUGNON, Jérôme; WEITENBERG, Christof; DALIBARD, Jean, 2012. Superfluid behaviour of a two-dimensional Bose gas. Nature Physics. Vol. 8, no. 9, pp. 645–648. Available from DOI: 10.1038/nphys2378. Number: 9 Publisher: Nature Publishing Group.
- LANDAU, L., 1941. Theory of the Superfluidity of Helium II. Phys. Rev. Vol. 60, pp. 356–358. Available from DOI: 10.1103/PhysRev.60.356.
- LEGGETT, A. J., 1970. Can a Solid Be "Superfluid"? *Physical Review Letters*. Vol. 25, no. 22, pp. 1543–1546. Available from DOI: 10.1103/PhysRevLett.25.1543. Publisher: American Physical Society.

LEGGETT, A. J., 1998. On the Superfluid Fraction of an Arbitrary Many-Body System at T=0. *Journal of Statistical Physics*. Vol. 93, no. 3, pp. 927–941. Available from DOI: 10.1023/B:JOSS.0000033170.38619.6c.

RAMAN, C.; ONOFRIO, R.; VOGELS, J. M.; ABO-SHAEER, J. R.;
KETTERLE, W., 2001. Dissipationless Flow and Superfluidity in Gaseous
Bose-Einstein Condensates. *Journal of Low Temperature Physics*. Vol. 122, no. 1, pp. 99–116. Available from DOI: 10.1023/A:1004864820016.

SIDORENKOV, Leonid A.; TEY, Meng Khoon; GRIMM, Rudolf; HOU, Yan-Hua; PITAEVSKII, Lev; STRINGARI, Sandro, 2013. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. *Nature*. Vol. 498, no. 7452, pp. 78–81. Available from DOI: 10.1038/nature12136. ▶ $f_{s,x}$ calculated by applying the perturbation $-v_0 \hat{P}_x$ to the system

$$f_{s,x} = 1 - \lim_{v_0 \to 0} \frac{\langle \hat{P}_x \rangle}{Nmv_0}$$
(1)

equation of continuity:

$$\frac{\partial \rho(x,t)}{\partial t} + \frac{\partial}{\partial x} [\rho(x,t)(v(x,t)-v_0)] = 0$$
(2)

stationary solution in the moving frame

$$\Rightarrow f_s = \frac{1}{\langle \rho \rangle \langle 1/\rho \rangle}$$

Theory - Effective mass

Equivalently, one can apply twisted boundary conditions and look at the evolution of energy:

$$\psi(L) = \psi(0)e^{i\theta} \tag{3}$$

$$E(\theta) \simeq E(0) + Nf_{s,x} \frac{\hbar^2 \theta^2}{2mL^2}$$
(4)

Look for solutions written as Bloch functions:

$$E(k) \simeq E(0) + N \frac{\hbar^2 k^2}{2m_{\star}^*}$$
 (5)

$$\Rightarrow f_{s,x} = \frac{m}{m_x^*}$$

Theory - Speed of sound

In the presence of V(x), the velocity of a sound wave propagating along x is:

$$c_x^2 = \frac{1}{m_x^* \kappa} \tag{6}$$

with $\kappa = \frac{1}{\rho_0 \frac{\partial \mu(\rho_0)}{\partial \rho_0}}$. And along *y*:

$$c_y^2 = \frac{1}{m\kappa} \tag{7}$$

$$f_{s,x} = \frac{m}{m_x^*} = \frac{c_x^2}{c_y^2}$$
(8)

$$f_{s,y} = \frac{m}{m_y^*} = 1 \tag{9}$$

We expand the solution of the GPE in powers of V_0 . It yields:

$$\frac{\rho_1}{\rho_0} = \frac{2V_0}{2\mu_0 + \epsilon_q} + \mathcal{O}(V_0^3)$$
(10)
$$f_{s,x} = 1 - \frac{2V_0^2}{(2\mu_0 + \epsilon_r)^2} + \mathcal{O}(V_0^4)$$
(11)

$$\kappa = \mu_0^{-1} \left[1 - \frac{2V_0^2 \epsilon_q}{(2\mu_0 + \epsilon_q)^3} \right] + \mathcal{O}(V_0^4)$$
(12)

Experiment - Full graph

