Phase diagram of a one-dimensional exciton-polariton condensate

Francesco Vercesi

26ème Congrès Général de la SFP - Fluides classiques et quantiques hors équilibre July 4, 2023

Université Grenoble Alpes, Laboratoire de Physique et Modélisation des Milieux Condensés

Exciton-polaritons

Strong coupling hamiltonian

$$\hat{H} = \sum_{\mathbf{k}} \{ E_{X,\mathbf{k}} \hat{a}^{\dagger}_{X,\mathbf{k}} \hat{a}_{X,\mathbf{k}} + E_{C,\mathbf{k}} \hat{a}^{\dagger}_{C,\mathbf{k}} \hat{a}_{C,\mathbf{k}} +$$

$$+\hbar\Omega_{R}\left(\hat{a}_{C,\mathbf{k}}^{\dagger}\hat{a}_{X,\mathbf{k}}+\hat{a}_{X,\mathbf{k}}^{\dagger}\hat{a}_{C,\mathbf{k}}
ight)\}$$

- cavity photons \hat{a}_C
- excitons in quantum well \hat{a}_X
- coupling rate Ω_R

$\Rightarrow \textbf{Exciton-polaritons}$

$$E_{UP/LP} = rac{E_X + E_C}{2} \pm \sqrt{\left(\hbar\Omega_R
ight)^2 + \left(rac{E_X - E_C}{2}
ight)^2}$$

Exciton-polaritons condensation

Driven dissipative steady-state

- losses of photons
 ⇒ finite lifetime of polaritons
- external laser driving (incoherent pumping)
 - \Rightarrow driven-dissipative steady state

Kasprzak et al, 2006. Nature, 443(7110)

Non equilibrium phase transition

- external laser driving > threshold \Rightarrow Bose-Einstein Condensation
- Dynamics and statistical properties \neq equilibrium BEC

Model for non equilibrium condensate

Mean-field dynamics of the condensate described by generalized Gross-Pitaevskii equation:

$$i\hbar\partial_t\psi = \left[\left(E_{EP}(\hat{k}) - \frac{i\hbar}{2}\gamma_{EP}(\hat{k})\right) + g|\psi|^2 + 2g_Rn_R + \frac{i\hbar}{2}Rn_R\right]\psi + \hbar\xi$$
$$\partial_tn_R = P - \left(\gamma_R + R|\psi|^2\right)n_R$$

- Kinetic + 2 body interactions (equilibrium BEC)
- losses $\gamma_{EP}(\hat{k}) + \text{driving } Rn_R$
- fluctuations ξ(t, x), white noise with amplitude σ = Rn_R:

 $egin{aligned} &\langle \xi(t,x)
angle = 0 \ &\langle \xi^*(t,x) \xi(t',x')
angle = 2\sigma \delta(x-x') \delta(t-t') \end{aligned}$

Q. Fontaine et al., Nature 608, 687 (2022)

Density-phase decomposition $\psi = \sqrt{\rho} e^{i\theta}$ The dynamics of the phase $\theta = \operatorname{Arg}(\psi)$ is mapped to the Kardar-Parisi-Zhang equation:

$$\partial_t \theta = \nu \partial_x^2 \theta + \frac{\lambda}{2} \left(\partial_x \theta \right)^2 + \sqrt{D} \eta$$

Non-equilibrium condensate: KPZ dynamics of the phase

The dynamics of the phase $\theta = \operatorname{Arg}(\psi)$ is mapped to the Kardar-Parisi-Zhang equation:

The **Kardar-Parisi-Zhang universality class** (non-equilibrium rough interfaces, randomly stirred fluids, ...)

Non-equilibrium condensate: KPZ dynamics of the phase

The decay of coherence displays the universal scaling behaviour of KPZ

•
$$g^{(1)}(x,t) = rac{\langle \psi^*(x_0,t_0)\psi(x_0+x,t_0+t)\rangle}{\sqrt{\langle |\psi(x_0,t_0)|^2 \rangle \langle |\psi(x_0+x,t_0+t)|^2 \rangle}}$$

• $|g^{(1)}(x,t)| \simeq e^{-\frac{1}{2}C_{\theta}(x,t)}$

•
$$C_{\theta}(x,t) = C_0 t^{2\beta} g^{(KPZ)}(\alpha_0 \frac{x}{t^{1/2}})$$

• $\beta = 1/3$, z = 3/2 KPZ exponents (1d)

Experiment \rightarrow see talk of J.Bloch ⁷

More non-equilibrium behaviours of exciton-polaritons

• Compact KPZ for discrete systems \Rightarrow de-synchronisation instability: **space-time vortices**

Arrays of coupled oscillators (in 1d and 2d)

R. Lauter, A. Mitra, and F. Marquardt, Physical Review E 96, (2017)

Space-time vortices in neq condensates

• Instability and pattern-formation \Longleftrightarrow Complex Ginzburg-Landau Equation

Spatio-temporal chaos in CGLE

V. García-Morales and K. Krischer, Contemporary Physics 53, 79 (2012)

Space-time patterns in gGPE

N. Bobrovska et al., Physical Review B 99, (2019).

Study of the phase diagram of one-dimensional EP condensate

F.V. et al, in preparation (2023)

Effect of the noise: space-time vortex activation

Defects vs KPZ

- With defects, the interface Arg(ψ) = θ(x, t) + 2πN has singularities but is KPZ piecewise.
- The temporal coherence is not affected by random phase slips:

$$g^{(1)}(t)=rac{\langle\psi^*(t_0)\psi(t+t_0)
angle}{\langle|\psi|^2
angle}\simeq\langle\,e^{i[heta(t_0+t)- heta(t_0)]}
angle=g_0\,e^{-lpha t^{2/3}}$$

• While the time-unwrapped phase $\theta^{(UW)}(x_0, t)$ is:

$$C^{(UW)}_{ heta}(t) = \langle \left[heta^{(UW)}(t_0+t) - heta^{(UW)}(t_0)
ight]^2
angle \sim t^1$$

Solitons: pattern formation from instability

Spatio-temporal dynamics of $\psi = \sqrt{ ho} \, e^{i \theta}$

Soliton-like defects:

Characterisation of the transition:

- Number of solitons:
 - $N_s \simeq rac{1}{\pi} \int_x |\partial_x \theta| dx$
- Average density: $\bar{\rho} = \frac{1}{L} \int_{x} |\psi|^{2} dx$

 \Rightarrow (μ , p) section of phase diagram

Momentum distribution $n_k = \langle |\psi(k)|^2 \rangle$

- KPZ: bogoliubov quasi-particles
- solitons: non-trivial behaviour $n_k \sim k^{-\alpha}$ ($\alpha = 6 \div 7$) at intermediate k
- vortices: spectral broadening for low k, but unclear signature

Summary

Non-equilibrium condensate of exciton-polaritons:

 $\theta(x, t)$

- Universal critical behaviour (KPZ)
- Rich phase diagram

1.0

 $\rho(x, t)/\rho_0$

- $\begin{array}{c} 1509 \\ 1009 \\ 509 \\ 500$
- Long-lived soliton defects
- Short coherence
- Density-phase coupled dynamics

• No density dynamics

200 400 -400 -200

• Large coherence

600

400

200

-400 -200

• KPZ universality of the phase

- Random localized defects
- Piece-wise coherence
- Resilient KPZ scaling of the coherence

- Understand modifications to the phase diagram due to finite size for experiments
- Extend analysis to understand the phase diagram of EP in two dimensions
- Accessing with EP the regimes of one-dimensional KPZ equation: new inviscid fixed point with dynamic scaling exponent z = 1 (→ see talk of L.Canet)

Thank you

Thanks for the attention!

Collaborators:

Anna Minguzzi LPMMC

Léonie Canet LPMMC

Maxime Richard Institut Néel

Quentin Fontaine C2N

Jacqueline Bloch C2N

Extra: coherence in the soliton regime

Coherence in the soliton regime

17

Trapping of single solitons with pump spatial profile

