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Introduction

Exciton-polariton are bosonic quasi-particles that arise from the strong coupling between light and matter. They are typically formed in a quantum well embedded in an optical microcavity,
from the interaction between quantum well excitons and cavity photons. Under non-resonant pumping, it is shown that exciton-polariton can form a Bose-Einstein condensate (BEC). This
out of equilibrium BEC is sustained in a stationary state by the competition between continuous laser driving and losses coming from the leakage of cavity photons. Recent studies focused
on the coherence properties of such driven-dissipative condensates and established connections with the Kardar-Parisi-Zhang (KPZ) universality class [1]. In particular, it is now known that
the variance of the phase of one-dimensional polariton condensates follows the KPZ scaling in space and in time [2]. In the defect-free KPZ phase [4] of a 1D polariton BEC, we investigate
the parameter dependence of blueshift stochastic fluctuations and propose a parallel with chemical potential quantum corrections. Chemical potential corrections are extensively studied for
equilibrium BECs [3], but their description is still lacking in driven-dissipative condensates.
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Conclusions

•Ω∞ is extracted from numerical simulations in the defect-free KPZ phase of a 1D polariton BEC

•Bogoliubov’s theory accurately predicts the dependency on 𝜎 and on the lattice parameter ℓ.

•Contrary to its equilibrium counterparts, the blueshift of a 1D polariton BEC still depend on the
lattice parameter ℓ.

•Blueshift corrections remain in the Edward-Wilkinson regime (𝜆 = 0), highlighting non-negligible
density corrections to the KPZ phase dynamics.
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From [2]

Polariton: Eigenstates of a strongly in-
teracting exciton-photon system
→ out of equilibrium BEC above a
pump threshold

From [3]

Negative effective mass polariton [5]: stable
BEC of repulsive effective polariton coupling

•𝜓 BEC wavefunction: non-linear stochastic Schrödinger equation

•𝑛𝑅 exciton reservoir density: rate equation
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∙ Equilibrium BEC: 𝜓(𝑥, 𝑡) =
√︀
𝜌(𝑥)𝑒𝑖𝜃(𝑡) with 𝜃(𝑡) = −(𝜇𝑀𝐹 + 𝜇𝑄𝐷)𝑡

∙ Driven-dissipative BEC: small fluctuations 𝜌(𝑥, 𝑡) ≈ 𝜌(𝑥)

𝜃(𝑡) = − (Ω𝑜 + Ω∞)⏟  ⏞  
MF chem. pot.
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𝑡 + (Γ𝑡)1/3𝜒

Adiabatic Bogoliubov’s theory
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Slope fluctuation computed from
equal-time correlation functions [6]
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Non-linear fit
Reconstruction gGPE
Bogoliubov's theory

Ω∞ ∝ 𝜎 non-universal
Ω∞ doesn’t vanish when 𝜆(𝑔) = 0
low-D BEC → depend on lattice parameter ℓ [7]
In typical defect-free conditions, |Ω∞| ≈ 0.5𝜇eV

∼ 5× 10−3|Ω𝑜|


