

Université Paris Cité - CNRS Pierre Allain, Biswarup Guha, Christophe Baker, Aristide Lemaître, Giuseppe Leo, Ivan Favero

Optomechanical cavity

Nonlinear Optomechanics ?

≽

P. Bergé et al, L'Ordre dans le Chaos (1997)

Ultra-high frequency optomechanical disk oscillators

At higher power: dual comb formation, optical and radiofrequency !

PE Allain, B. Guha, C. Baker, D. Parrain, A Lemaitre, G Leo, I Favero. Physical Review Letters 126, 243901 (2021)

Global comb evolution in a GaAs disk resonator

PE Allain, B. Guha, C. Baker, D. Parrain, A Lemaitre, G Leo, I Favero. Physical Review Letters 126, 243901 (2021)

Nonlinear semiconductor photonic interactions

Associated dispersive effects

- Free carrier dispersion (blue shift)
- Themo-optic dispersion (red shift)

Upon proper conditions, the combination of these features can produce self-pulsing:

T. J. Johnson, M. Borselli, and O. Painter, Opt Exp 14, 817 (2006)

A complete and self-consistent model

$$\dot{a}(t) = -\frac{\kappa}{2}a(t) + i\left[\Delta^{b}\omega + g_{\rm om}x(t) + \frac{\omega_{\rm cav}}{n}\frac{dn}{dT}\Delta T(t) + \frac{\omega_{\rm cav}}{n}\frac{dn}{dN}N(t)\right]a(t) + \sqrt{\kappa_{\rm ex}}a_{\rm in}(t),$$

$$m_{\rm eff}[\ddot{x}(t) + \Gamma_m \dot{x}(t) + \omega_m^2 x(t)] = F_{\rm opt}(t) + F_{\rm pth}(t),$$

$$\dot{\Delta T}(t) = -\frac{\Delta T(t)}{\tau_{\rm th}} + \frac{R_{\rm th}\hbar\omega_L}{\tau_{\rm th}}(\kappa_{\rm lin} + \kappa_{\rm TPA} + \kappa_{\rm FCA})|a(t)|^2,$$

$$\dot{N}(t) = -\frac{N(t)}{\tau_{\rm fc}} + \frac{\beta_{\rm TPA}c^2\hbar\omega_L}{2n_g^2 V_{\rm FCA}^2} |a(t)|^4 \qquad \qquad F^k(t) = \iiint_V \frac{\sigma_{ij}^k(\mathbf{r}, t)S_{ij}(\mathbf{r}, t)}{u(t)} d^3\mathbf{r}$$
$$\sigma_{ij}^{th} = C_{ijkl}\beta_{kl}\Delta T$$

$$\sigma_{ij}^{es} = -\frac{1}{2}\varepsilon_0(\varepsilon_{km}p_{mnij}\varepsilon_{nl})E_kE_l$$

I. Favero, Optomechanical Interactions, Les Houches Lectures 2015 (2020)

All parameters are measured or computed

Parameter	Value	Description
$\omega_{\rm cav}$	$2\pi \cdot 1.96 \times 10^{14}$ Hz	Bare cavity frequency
κ_0	$2\pi \cdot 1.25 \times 10^{10} \text{ Hz}$	Intrinsic cavity decay
κ _{ex}	$2\pi \cdot 1.61 \times 10^9 \text{ Hz}$	Extrinsic cavity decay
P_L	3.56 mW	Input laser power
$g_{\rm om}$	$2\pi \cdot 5.24 \times 10^{19} \text{ Hz.m}^{-1}$	Frequency-pull parameter
dn/dT	$2.3 \times 10^{-4} \text{ K}^{-1}$	Thermo-optic coefficient
dn/dN	$-5.53 \times 10^{-27} \text{ m}^3$	FCD coefficient
ω_m	$2\pi \cdot 314$ MHz	Mechanical frequency
$m_{\rm eff}$	53 pg	Effective mass
Γ_m	$2\pi \cdot 1.01 \times 10^5 \text{ Hz}$	Mechanical damping
α	$1.9 \ \mu N.K^{-1}$	Photothermal coefficient
$ au_{ m th}$	0.97 μs	Thermal relaxation time
$R_{\rm th}$	$3.78 \times 10^{6} \text{ K.W}^{-1}$	Thermal resistance
$\kappa_{\rm lin}$	$2\pi \cdot 4.14 \times 10^7 \text{ Hz}$	Linear absorption rate
$eta_{ ext{TPA}}$	$2.66 \times 10^{-9} \text{ m.W}^{-1}$	TPA coefficient
n_q	2.6	Group velocity index
V _{TPA}	$4.66 \times 10^{-18} \text{ m}^3$	Nonlinear TPA volume
$\sigma_{ m FCA}$	$6.03 \times 10^{-21} \text{ m}^2$	FCA cross section
$ au_{ m fc}$	14 ps	Free-carrier relaxation time
$V_{\rm FCA}$	$4.57 \times 10^{-18} \text{ m}^3$	FCA volume

Experiment-theory comparison

Time traces

Mechanical comb formation

What did we learn, what is next?

- Nonlinear photonics + optomechanics generate stable regimes
- A mechanical comb is formed, which is triggered by light
- It is controlled by optical detuning and optical power
- The comb extends over 10% of the carrier frequency
- Can it extend further to generate true isolated mechanical pulses ?
- Is it low-noise enough to be employed in sensing applications ?
- Would it exist even in absence of thermal effects ?

Time evolution of other variables

Bistabilities induced by optomechanical non-linearity

Optical bi-stability, Walther group

Optical back-action on a micro-mirror (2003) Karrai group, Munich University 10

Observable consequences in the dynamical regime

In the self-oscillation regime

Linear regime

F Marquardt, JGE Harris, SM Girvin, PRL 96 (10), 103901 (2006)

$$x(t) \approx \bar{x} + A\cos(\omega_0 t)$$
$$\alpha(t) = e^{i\varphi(t)} \sum_n \alpha_n e^{in\omega_0 t}$$
$$\alpha_n = \frac{1}{2} \frac{J_n\left(-\frac{A}{\omega_0}\right)}{in\omega_0 + \frac{1}{2} - i\bar{x}}$$

Multi-frequency response

And beyond

Strength of interactions

Limit cycles

P. Bergé et al, L'Ordre dans le Chaos (1997)