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Various types of single-cell experiments

Time-lapse video-microscopy Mother machine :

Snapshot of live cells

Old-pole “mother” cell
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P. Wang et al. 2010




Statistical biais in a population of cells

Powell relation (1956)
fpop (7_) — 26_A7-flin (T)

U U U U A : population growth rate

; =] ‘;‘ Two kinds of averages:
=] L A pop : «snapshot » average in a population
lin : average along a lineage of cells
Powell inequalities : <T>p0p S Td S <T>l7;n
Tq = In2/! doubling time of the population

Stochasticity of division time affects the population growth rate



Backward (retrospective) sampling
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Forward (chronological) sampling

Weight on a lineage with K divisions :
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Inference of population growth rate
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A. Genthon and D. L.,
Sci. Rep., 10, 11889 (2020)

Mother machine data : Tanouchi et al. (2015)
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Incomplete cell lineages

I Cells can stop dividing or die because of changes in their environment

I Cells can be flushed away/diluted as in open microfluidic devices
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I In either cases, the corresponding cell lineages are incomplete :

How should we treat dead lineages statistically ?




I Dead lineages should have no weight for backward sampling :
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I Forward distribution conditioned on survival :
Pior (@) = Pror(at]! =1)
I Forward probability of survival and its rate ! ;

Pror (! =1,1) = | Pror (K, ! =1,1)
K

Iy = %In Por (! =1,1)



Cell death induced by dilution
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The fitness landscape

Given a trait s and n(s,t) the number of lineages displaying this trait at time t :

por(s = NS K/(NoZ) and  Prack(5,1) = n(s,HN (1)
K =0

Fitness landscape h(s) ignores the distinction between dead and surviving lineages :

1
hi(s)=!¢+ —1In Poack (S, 1) T. Nozoe et al. 2017
t

Pror (S, 1)

Proper fitness landscape :

| 1 |
hi(s)= TIn 2P (K tls)
K

. . hi(s)= hi(s)! hi(s)=!{+ =In =—=
The survivor bias : i (S) t(S) t(8) ¢ t Pror (S, t)




Cell death induced by drug exposure
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Results of the analysis :

I Independance of trait 1 with survival and with the fitness of lineages
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I The decrease of the landscape of trait 2 is not meaningful but is mainly due to the survivor bias



Inference of division and death rates from fitness landscapes

Using the time-averaged trait S

h{ (§) — r(g) division rate
h,(S)="11(5) death rate
Conditions:

i trait can fluctuate in time but should be
unaltered at division

ii.  Division rate is wealkly non-linear or the
autocorrelation time of the trait is large with

respect to observation time
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Strength of selection

I Strength of selection acting on trait s in the absence of death
L (s) = 'h(S)"back #! h(S)"or $ O T. Nozoe et al. 2017

becomes in the presence of death

l's = Iy "pack #! Ny "o and lg=" g+ |

death induced part

Some observations :

I Selection can not be estimated only from growth rates, death rates matter too

I Selection is increased by death only when cells that divide faster also die faster
but selection can be also decreased or be unaffected by death

I Variability of death rates among lineages leads to fitness gain for the population



Conclusion

A general framework for the statistical lineage trees
Inference of selection and fitness from lineage trees data
Inference of division rate and death rate from lineage statistics

Death matters for measuring the strength of selection
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