Chemically-specific multiscale mechanical simulation of nanomaterials: improving tractability with machine learning

HYSIQUE

CNIS

UCL

Maxime Vassaux

Institut de Physique de Rennes Univ. Rennes, CNRS - UMR 6251

Peter V. Coveney Centre for Computational Science University College London

> @mxvassaux maxime.vassaux@cnrs.fr

Emergence of mechanical properties across scales

• hierarchy of scales more or less separated

Hierarchical structure of the red abalone (gastropods) nacre

Vassaux, et al. Adv. Theo. Sim. (2019) 3.1

<u>n, et al. RSC Adv. (2012)</u>

A wide spectrum of multiscale strategies

- different feedback frequency and resolution
 - hierarchical
 - semi-concurrent
 - concurrent

Shenoy et al. J. Mech. Phys. Solids (1999) 47.3 E et al. Phys. Rev. B: Condens. Matter (2003) 67.9

Maxime Vassaux

SCEMa: Simulation Coupling Environment for Materials

SCEMa: https://github.com/UCL-CCS/SCEMa

Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142

4/17

SCEMa: Simulation Coupling Environment for Materials

- Prediction of advanced structural materials properties at the meter/second scale
- Concurrent model coupling asynchronously
 - a continuum macroscale model (FE)
 - a molecular microscale model (MD)
- Computational cost
 - 0.1 core hour per microscale simulation
 - 10,000 cells x 8qps/cell x 5 replicas/qp
 - → 400,000 independent microscale simulations per macroscale simulation time-step
- Scalability benchmark on full partition
 - 311,000 CPUs of SuperMUC-NG
 - 316x peak speed-up on 2048 nodes

Vassaux, Richardson and Coveney, Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142

Multiscale simulation of materials enhanced with machine learning

Accelerating semi-concurrent approaches

- loads of molecular data
- why not use machine learning?
- myriads of possibilities to combine

7/17

'ng

Determine identical simulations using unsupervised learning

Vassaux, et al. Adv. Theor. Simul. (2020) 4.2

Compute as few molecular simulations as possible

- **clustering** to minimise computational effort
- splines are considered similar if below arbitrary threshold **a**
- algorithm
 - build the graph of similar configurations
 - compute the most connected configurations
 - remove simulated configurations and similar ones from the graph
 - return to 1. (until no more configurations to compute the stress from)

$$\frac{1}{s_{1,2}} \propto \sum_{n=1}^{n_{cp}} \sum_{i=1}^{6} \sqrt{\left(\tilde{\epsilon}_{1,n,i} - \tilde{\epsilon}_{2,n,i}\right)^2}$$

Vassaux, et al. Adv. Theor. Simul. (2020) 4.2

9/17

Maxime Vassaux

Multiscale simulation of a compact-tension test

10/17

Maxime Vassaux

Multiscale simulation of materials enhanced with machine learning

Make it faster using interpolation (rather than database look up)

- ξ^t $\Delta S^t = \frac{\partial \psi^{t+\Delta t}}{\partial F^{t+\Delta t}}$ ΔF^t $F^{t+\Delta t}$ $\psi^{t+\Delta t}$, encode NN_{2/2} F^t $\dot{z}^{t+\Delta t}$ $Z^{t+\Delta t}$ ENC NN_{z} $D^{t+\Delta t} =$ S^t free energy thermodynamics Z^t evolution equation decode DECthermodynamically-admissible neural network ξ^t (MPa) (MPa)1000 E (-) 0.00 с П Σ_{22} -2500-0.01 0.00 0.01 -0.01 0.00 0.01 200 100 0 E_{11} (-) E_{11} (-) increments (-) (b) stress-strain behavior (a) strain path
- supervised machine learning can fit mechanical data

Masi, et al. CMAME, (2022) 298

11/17

 $\begin{array}{c} \widehat{\mathbb{I}}_{2} \\ \widehat{\mathbb{I}}_$

(c) free-energy and dissipation rate in function of volume change

microscale model for training data generation

³D lattice material structure

ML-based model

Maxime Vassaux | Multiscale simulation of materials enhanced with machine learning

But how to quantify accuracy of ML-model prediction?

- ML models most often do not have uncertainty estimates...
- Query-by-Committee
 - from Active Learning
 - minimise size of training datasets
 - improve generalization of ML model

Schran, et al. J. Chem. Phys. (2020) 153

Seung, et al. COLT. (1992)

Can we trust the committee?

- reference configuration
 - committee size: 4
 - strain accuracy: 30 MPa
 - train frequency: 100 samples

Accuracy, data requirements and speed-up

- reference configuration
 - 0
 - 0
 - 0

prediction value (Pa)

-2

Influence of parameters: seed, committee size, accuracy and training frequency

16/17

Maxime Vassaux

Multiscale simulation of materials enhanced with machine learning

Conclusions

- MD is already a powerful tool
 - to capture some material properties
 - to understand physics at hardly accessible scales
 - but!
 - MD has limited (scale) capacities
 - MD needs to be made more reliable (VVUQ, see other talk)
- multiscale strategies and data-based methods help
 - hierarchical: cheap, efficient but limited transferability
 - **semi-concurrent**: expensive but widely applicable
 - **compromise**: using machine-learning approaches

- unsupervised and supervised acceleration
 - a priori assessment of ML model uncertainty
 - **10¹ to 10²** theoretical speed-up of multiscale simulations

Acknowledgements

- Éric Robin
- Peter Coveney
- Werner Müller
- James Suter
- Wouter Edeling
- Robin Richardson
- Robert Sinclair
- and many others ...

Horizon 2020 European Union Funding for Research & Innovation

ucl.ac.uk/mesoscale-modelling-consortium/

