Efficient estimation of trainability for Variational Quantum Algorithms

Congrès Général des 150 ans de la SFP MC10 Physique et Intelligence Artificielle 06.07.2023

Valentin Heyraud

Lab. Matériaux et Phénomènes Quantiques - Université Paris Cité

"Efficient estimation of trainability for Variational Quantum Circuits", V. Heyraud, Z. Li, K. Donatella, A. Le Boité, and C. Ciuti, arXiv:2302.04649

Summary

- 1. Variational Quantum Algorithms
- 2. Trainability and Barren Plateaus
- 3. Efficient estimation of the trainability
- 4. Perspectives

• Objective: Finding the ground state of a given N-spins Hamiltonian $\hat{H} = \sum w_{\alpha} \hat{P}_{\alpha} \quad \text{with} \quad \hat{P}_{\alpha} \in \left\{ \hat{1}, \hat{X}, \hat{Y}, \hat{Z} \right\}^{\otimes N}$

• Objective: Finding the ground state of a given N-spins Hamiltonian $\hat{H} = \sum w_{\alpha} \hat{P}_{\alpha} \quad \text{with} \quad \hat{P}_{\alpha} \in \left\{ \hat{1}, \hat{X}, \hat{Y}, \hat{Z} \right\}^{\otimes N}$ Variational state

 $|\phi_{\theta}\rangle = \hat{U}(\theta) |0\rangle^{\otimes N},$

• Objective: Finding the ground state of a given N-spins Hamiltonian $\hat{H} = \sum w_{\alpha} \hat{P}_{\alpha} \quad \text{with} \quad \hat{P}_{\alpha} \in \left\{ \hat{1}, \hat{X}, \hat{Y}, \hat{Z} \right\}^{\otimes N}$ Variational state

 $|\phi_{\theta}\rangle = \hat{U}(\theta) |0\rangle^{\otimes N}$,

McClean et al., "The theory of variational hybrid quantum-classical algorithms", New J. of Phys. (2016) Peruzzo et al., "A variational eigenvalue solver on a photonics quantum processor", Nat. Commun. (2014)

Hardware Efficient Ansatz circuit

 Objective: Finding the ground state of a given N-spins Hamiltonian $\hat{H} = \sum w_{\alpha} \hat{P}_{\alpha} \quad \text{with} \quad \hat{P}_{\alpha} \in \left\{ \hat{1}, \hat{X}, \hat{Y}, \hat{Z} \right\}^{\otimes N}$

Variational state

 $|\phi_{\theta}\rangle = \hat{U}(\theta) |0\rangle^{\otimes N}$,

Parameterized unitary

$$\hat{U}(\boldsymbol{\theta}) = \prod_{i=1}^{M} \left(e^{-i\frac{\theta_i}{2}\hat{P}_i} \right) \hat{W}_i, \qquad \hat{P}_i \in \left\{ \hat{X}, \hat{Y}, \hat{Z} \right\}$$

Variational Quantum Algorithms

Training of the ansatz

• Minimization of the energy $E\left(\boldsymbol{\theta}\right) = \langle \phi_{\boldsymbol{\theta}} | \hat{H} | \phi_{\boldsymbol{\theta}} \rangle, \quad \boldsymbol{\theta}^* = \operatorname{argmin} E\left(\boldsymbol{\theta}\right)$

- Minimization of the energy $E(\boldsymbol{\theta}) = \langle \phi_{\boldsymbol{\theta}} | \hat{H} | \phi_{\boldsymbol{\theta}} \rangle, \quad \boldsymbol{\theta}^* = \operatorname{argmin} E(\boldsymbol{\theta})$
- Initialisation: random choice $\theta_0 \sim \mathbb{P}(d\theta_0)$

- Minimization of the energy $E(\theta) = \langle \phi_{\theta} | \hat{H} | \phi_{\theta} \rangle, \quad \theta^* = \operatorname{argmin} E(\theta)$
- Initialisation: random choice $\theta_0 \sim \mathbb{P}(d\theta_0)$

Gradient descent in the energy landscape

- Minimization of the energy $E(\theta) = \langle \phi_{\theta} | \hat{H} | \phi_{\theta} \rangle, \quad \theta^* = \operatorname{argmin} E(\theta)$
- Initialisation: random choice $\theta_0 \sim \mathbb{P}(d\theta_0)$
- Gradient descent

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k - \eta \, \nabla_{\boldsymbol{\theta}} E\left(\boldsymbol{\theta}_k\right),$$
$$\boldsymbol{\theta}_i E\left(\boldsymbol{\theta}\right) = \frac{1}{2} \left(E\left(\boldsymbol{\theta} + \frac{\pi}{2}\boldsymbol{e}_i\right) - E\left(\boldsymbol{\theta} - \frac{\pi}{2}\boldsymbol{e}_i\right) \right)$$

Gradient descent in the energy landscape

Trainability and Barren Plateaus

The Barren Plateaus phenomenon

• Exponential vanishing of the energy gradient:

• Exponential vanishing of the energy gradient:

Flat energy landscape

• Exponential vanishing of the energy gradient: $\mathbb{E}_{\theta} \left[\partial_{i} E \left(\boldsymbol{\theta} \right)^{2} \right] \sim \mathcal{O} \left(\frac{1}{2^{N}} \right) \implies \mathbb{P} \left(\left| \partial_{i} E \left(\boldsymbol{\theta} \right) \right| \geq \epsilon \right) \leq \mathcal{O} \left(\frac{\epsilon^{2}}{2^{N}} \right)$

Flat energy landscape

- Exponential vanishing of the energy gradient: $\mathbb{E}_{\theta} \left[\partial_{i} E \left(\boldsymbol{\theta} \right)^{2} \right] \sim \mathcal{O} \left(\frac{1}{2^{N}} \right) \implies \mathbb{P} \left(\left| \partial_{i} E \left(\boldsymbol{\theta} \right) \right| \geq \epsilon \right) \leq \mathcal{O} \left(\frac{\epsilon^{2}}{2^{N}} \right)$
- Ansatz difficult to train!

Flat energy landscape

• Exponential vanishing of the energy gradient: $\mathbb{E}_{\theta} \left[\partial_{i} E\left(\theta\right)^{2} \right] \sim \mathcal{O} \left(\frac{1}{2^{N}} \right) \implies \mathbb{P} \left(\left| \partial_{i} E\left(\theta\right) \right| \ge \epsilon \right) \le \mathcal{O} \left(\frac{\epsilon^{2}}{2^{N}} \right)$

Ansatz difficult to train!

$$\nabla E(\boldsymbol{\theta}) \simeq 0 \implies \boldsymbol{\theta}_{k+1} \simeq \boldsymbol{\theta}_k$$

Flat energy landscape

- Exponential vanishing of the energy gradient: $\mathbb{E}_{\boldsymbol{\theta}}\left[\partial_{i} E\left(\boldsymbol{\theta}\right)^{2}\right] \sim \mathcal{O}\left(\frac{1}{2^{N}}\right) \implies \mathbb{P}\left(\left|\partial_{i} E\left(\boldsymbol{\theta}\right)\right| \geq \epsilon\right) \leq \mathcal{O}\left(\frac{\epsilon^{2}}{2^{N}}\right)$
- Ansatz difficult to train!

$$\nabla E(\boldsymbol{\theta}) \simeq 0 \implies \boldsymbol{\theta}_{k+1} \simeq \boldsymbol{\theta}_k$$

• Multiple origins: Noise, expressivity, entanglement, global cost functions ...

McClean et al., "Barren plateaus in quantum neural network training landscapes", Nat. Commun. (2018)

Flat energy landscape

Trainability and Barren Plateaus

How to estimate the trainability ?

Trainability and Barren Plateaus

How to estimate the trainability ?

Avoiding barren plateaus: Specific ansatz architectures and initialization methods

Trainability and Barren Plateaus How to estimate the trainability ?

Avoiding barren plateaus: Specific ansatz architectures and initialization methods
 Estimating the average gradient amplitude
 $\mathbb{E}\left[\partial_i E\left(\boldsymbol{\theta}\right)^2\right] \simeq \frac{1}{K} \sum_{i=1}^K \partial_i E\left(\boldsymbol{\theta}_i\right)^2$ Estimation of the second s

Trainability and Barren Plateaus How to estimate the trainability ?

• Avoiding barren plateaus: Specific ansatz architectures and initialization methods • Estimating the average gradient amplitude $\mathbb{E}\left[\partial_i E\left(\boldsymbol{\theta}\right)^2\right] \simeq \frac{1}{K} \sum_{i=1}^K \partial_i E\left(\boldsymbol{\theta}_i\right)^2$

Trainability and Barren Plateaus How to estimate the trainability ?

- Avoiding barren plateaus: Specific ansatz architectures and initialization methods • Estimating the average gradient amplitude $\mathbb{E}\left[\partial_{i} E\left(\boldsymbol{\theta}\right)^{2}\right] \simeq \frac{1}{K} \sum_{i=1}^{K} \partial_{i} E\left(\boldsymbol{\theta}_{j}\right)^{2}$
- Classical simulation complexity $\sim \mathcal{O}(2^N)$ \implies Too costly!

Bloch sphere

• Clifford gates: gates mapping Pauli operators to Pauli operators

• Clifford gates: gates mapping Pauli operators to Pauli operators

$$\hat{U} \in C_N \iff \hat{U}^\dagger \hat{P} \hat{U} = \hat{P}', \text{ with}$$

• Example: X, Y and Z rotations with $\theta \in \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi\right\}$

• Clifford gates: gates mapping Pauli operators to Pauli operators $\hat{U} \in C_N \iff \hat{U}^{\dagger} \hat{P} \hat{U} = \hat{P}'$, with $\hat{P}, \hat{P}' \in \left\{ \hat{1}, \hat{X}, \hat{Y}, \hat{Z} \right\}^{\otimes N}$

• Example: X, Y and Z rotations with $\theta \in \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi\right\}$

• Classical simulation of Clifford circuits: complexity $\sim \mathcal{O}(N^p)$

Gottesman, "The Heisenberg Representation of Quantum Computers", arXiv:quant-ph/9807006 (1998) Aaronson and Gottesman, "Improved simulation of stabiliser circuits", PRA (2004)

Under some conditions, sampling Cliff
 quantities:

$$\mathbb{E}_{\boldsymbol{\theta}} \left[\partial_i E \left(\boldsymbol{\theta} \right)^2 \right] \simeq \frac{1}{K} \sum_{j=1}^{K} \partial_i E \left(\boldsymbol{\theta} \right)^2$$

Gottesman, "The Heisenberg Representation of Quantum Computers", *arXiv:quant-ph/9807006* (1998) Aaronson and Gottesman, "Improved simulation of stabiliser circuits", *PRA* (2004)

• Under some conditions, sampling Clifford angles is enough to estimate average

Under some conditions, sampling Cliff
 quantities:

$$\mathbb{E}_{\boldsymbol{\theta}}\left[\partial_{i} E\left(\boldsymbol{\theta}\right)^{2}\right] \simeq \frac{1}{K} \sum_{j=1}^{K} \partial_{i} E\left(\boldsymbol{\theta}_{j}\right)^{2} \quad \leftarrow \quad \boldsymbol{\theta}_{j} \in \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi\right\}^{M}$$

Gottesman, "The Heisenberg Representation of Quantum Computers", *arXiv:quant-ph/9807006* (1998) Aaronson and Gottesman, "Improved simulation of stabiliser circuits", *PRA* (2004)

• Under some conditions, sampling Clifford angles is enough to estimate average

Under some conditions, sampling Cliff
 quantities:

$$\mathbb{E}_{\boldsymbol{\theta}} \left[\partial_{i} E\left(\boldsymbol{\theta}\right)^{2} \right] \simeq \frac{1}{K} \sum_{j=1}^{K} \partial_{i} E\left(\boldsymbol{\theta}_{j}\right)^{2} \leftarrow \boldsymbol{\theta}_{j} \in \left\{ -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi \right\}^{N}$$
Clifford circuits

Gottesman, "The Heisenberg Representation of Quantum Computers", *arXiv:quant-ph/9807006* (1998) Aaronson and Gottesman, "Improved simulation of stabiliser circuits", *PRA* (2004)

• Under some conditions, sampling Clifford angles is enough to estimate average

quantities:

$$\mathbb{E}_{\boldsymbol{\theta}}\left[\partial_{i} E\left(\boldsymbol{\theta}\right)^{2}\right] \simeq \frac{1}{K} \sum_{j=1}^{K} \partial_{i} E\left(\boldsymbol{\theta}_{j}\right)^{2} \leftarrow \boldsymbol{\theta}_{j} \in \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi\right\}^{N}$$

• One can estimate the trainability with a complexity $\sim O(N^p M^q)$

Gottesman, "The Heisenberg Representation of Quantum Computers", arXiv:quant-ph/9807006 (1998) Aaronson and Gottesman, "Improved simulation of stabiliser circuits", PRA (2004)

Under some conditions, sampling Clifford angles is enough to estimate average

CITIORA CIRCUILS

"Efficient estimation of trainability for Variational Quantum Circuits", V. Heyraud, Z. Li, K. Donatella, A. Le Boité, and C. Ciuti, arXiv:2302.04649

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta} |1\rangle \right)$$

$$|\phi\rangle = \hat{R}_{Z}(\theta) |+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta} |1\rangle \right)$$

$$|\phi\rangle = \hat{R}_{Z}(\theta)|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta}|1\rangle\right)$$

$$|\phi_j\rangle = \hat{R}_Z(\theta_j)|+\rangle, \quad j = 1, \dots, K$$

$$|\phi\rangle = \hat{R}_{Z}(\theta)|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta}|1\rangle\right)$$

$$|\phi_{j}\rangle = \hat{R}_{Z}\left(\theta_{j}\right)|+\rangle, \quad j = 1, \dots, K$$
$$\hat{\rho} = \frac{1}{K}\sum_{j=1}^{K} |\phi_{j}\rangle\langle\phi_{j}|$$

$$|\phi\rangle = \hat{R}_{Z}(\theta)|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta}|1\rangle\right)$$

$$|\phi_{j}\rangle = \hat{R}_{Z}\left(\theta_{j}\right)|+\rangle, \quad j = 1, \dots, K$$
$$\hat{\rho} = \frac{1}{K}\sum_{j=1}^{K} |\phi_{j}\rangle\langle\phi_{j}|$$

$$|\phi\rangle = \hat{R}_{Z}(\theta) |+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta} |1\rangle \right)$$

$$|\phi_{j}\rangle = \hat{R}_{Z}\left(\theta_{j}\right)|+\rangle, \quad j = 1, \dots, K$$
$$\hat{\rho} = \frac{1}{K}\sum_{j=1}^{K} |\phi_{j}\rangle\langle\phi_{j}|$$

1|)

• The method can be used to evaluate many average quantities

The method can be used to evaluate many average quantities
Limited to independent rotations and fixed Clifford gates

- The method can be used to evaluate many average quantities
- Limited to independent rotations and fixed Clifford gates
- Current investigations:
 Optimisation of the circuit architect

Optimisation of the circuit architecture using reinforcement learning methods

Thank you !

Paper available on arXiv !

"Efficient estimation of trainability for Variational Quantum Circuits", V. Heyraud, Z. Li, K. Donatella, A. Le Boité, and C. Ciuti, arXiv:2302.04649