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  Neutrino (𝜈) physics in less than a nutshell. 

• 3	known	flavors	of	neutrinos	
			Associated	to	the	lepton	also	produced	when	a	𝜈	is.

Known	elementary	parDcles	(Standard	Model)

• 3	quantum	mass	states	of	neutrinos	
					Rela4onship	with	flavor	states	is	not	fully		known.

•	Determining	the	Neutrino	Mass	Ordering		
(Normal	or	Inverted)	is	one	of	the	hoKest	
quesDons	in	parDcle	physics.		

•	This	is	JUNO’s	main	objecDve.	

Is	𝜈3	the	heaviest	or	the	lightest	?	
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 Neutrino Mass Ordering with the JUNO experiment.  

Exploit	Neutrino	OscillaDon		 Spontaneous	change	of	flavor	between	crea4on	&	detec4on.	

Measure	the	inprint	of	oscillaDon	on	the	Energy	
spectrum	of	an4neutrinos	produced	by	nuclear	reactors.	

Production of 𝜈e in reactors

2015

Detection in JUNO 

52.5	km		
𝜈e	disappear		

(oscillate	to	other	flavors). 

=>	Necessits	to	reconstruct	the	Energy	of	the	𝜈e	with	an	extreme	precision.	

NMO determination:  

detec4ng	the	very	small		

dephasing	between	NO	and	IO
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  The Jiangmen Underground Neutrino Observatory (JUNO) 

One	of	the	4	major	neutrino	physics	next	genera4on	experiments.	

•	A	35	m	diameter	sphere	filled	with	Liquid	Scin4llator	(20	kt).

•	Readout	by	a	double	calorimetric	system	:		
        17600 20-inch and 25600 3-inch PMTs.
•	Under	construc4on	in	China,	700	m	underground.	

Data	taking	expected	to	start	late	2024.	

		Reactor											measurement	principle	(	goal:	EIBD,	XIBD)

35 m

× 43200 PMTs



6

 Classical Energy reconstruction at JUNO

Important	feature	in	subatomic	physics:	measurements	most	oTen	rely	on	the	comparison	
of	data	with	models	stemming	from	very	detailed	and	realis4c	simula4ons.	

•	Tuned	and/or	complemented	with	real	data	control	samples	(e.g.	from	calibra4on	sources).

In	JUNO,	a	rather	‘’simple",	homogenous	detector,	this	allows	to	predict	the	distribu4on	of	
charge	&	hit	Dmes	all	over	the	PMTs,	given	the	true	E	&	Posi4on	of	the	IBD.	

=>		We	can	regress	the	Energy	by	maximising	a	Likelihood	based	on	those	probabili4es.	

				(	I’ll	refer	to	‘'Modelled''	data	in	this	presenta4on)

PDF of Charge Qi distribution PDF of ti distribution. 
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 Classical Energy reconstruction at JUNO

=>  The	loss	of	detector	informa4on	and	generality	is	small	

=> Classical	reconstruc4on	performs	very	well.	

=>	A	challenge	for	machine	learning	
methods	to	do	beJer.	

The	necessary	performance	for	a	3𝜎	sensi4vity	to	
NMO	in	6	years	of	data	taking.	

Classical	methods	use	low	level	data	(Qi,	ti)	from	all	PMTs	,	make	minimal	assump4ons.	
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 Motivation for ML methods

Resolu4on	and	bias	in	the	EIBD	reconstruc4on	must	be	understood	very	precisely.	

				 => Alterna4ve	methods	brings	robustness:	not	all	depend	the	same	way	on	mismodelling	effects.	

DL	methods:	Might	use	informa4on	classical	methods	don’t;				
																															Might	rely	less	on	assump4ons.	

					•	Most	oTen	use	low	level	signal	:		(Q,t)	from	every	PMTs	

					•	Or	even	the	lowest	:	full	Waveform	informa4on.	

TempDng to	use	DL	since	JUNO	
events	look	like	(spherical)	images.		

			Can	we	benefit	of	the	advances	that			
			occured	over	the	last	decade	in			
			image	recogini4on	?

	Presented	today:	some	methods	applied	to	reactor	an4neutrino	reconstruc4on.

IBD vertex 
6.165 MeV

IBD vertex 
6.165 MeV

PMT thit PMT Q  

					•	Besides	a	poten4al	gain	on	resolu4on	and	bias	:	execu4on	speed	!
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  Convolutional Neural Networks                     (arXiv:2101.04839v2 ; arXiv:2205.04039v1) 

					•	One	key	ques4on	:	necessary	level	of	complexity	?	(layers,	parameters)	?	

					•	Comparing	these	two	algorithms	answers	it	to	a	large	extent.	

Input	to	the	CNN	:		N-channel	image;	each	pixel	is	a	PMT.		Ex:	

Spherical	image -> planar	image.	
Projec'on	conserving	distance		
between	PMTs.			

CNNs	work	on	d-dimensional	domains.	

Strategy:	slightly	adapt	well	established	algorithms	to	JUNO	:	VGG-J	and	ResNet-J



10

VGG-J

ResNet-J
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  Convolutional Neural Networks                     (arXiv:2101.04839v2 ; arXiv:2205.04039v1) 

Input	to	the	CNN	:		N-channel	image;	each	pixel	is	a	PMT.		Ex:	

Spherical	image -> planar	image.	
Projec'on	conserving	distance		
between	PMTs.			

CNNs	work	on	d-dimensional	domains.	

Strategy:	slightly	adapt	well	established	algorithms	to	JUNO	:	VGG-J	and	ResNet-J

					•	Op4misa4on	1	:	Architecture	complexity	(e.g.	#	of	layers	&	parameters)
									These	2	algorithms	vary	a	lot	in	this	respect.		

					•	Op4misa4on	2	:			Inputs	!

But	:	2	types	of	Large	PMTs	in	JUNO	:	separate	them.	
Also	use	the	4me	of	the	second	it	in	each	PMT.	

6-channel	input:		
(Q1,	tfirst,1	,	tsec,1	,		Q2,	tfirst,2	,	tsec,2	)

First	version	:	2-channel	input	(Q1,	tfirst)	

Two types of 20-inch PMTs :  
   5000 Hamamastu Dynode PMT  
   12612  NNVT Micro-channel Plate (MCP)
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  Convolutional Neural Networks                      (arXiv:2101.04839v2 ; arXiv:2205.04039v1) 

Training	details:	sample	of	5	M	e+	interac4ons	(full	simula4on	of	all	phenomena	in	JUNO)	

	Performance:	similar	to	classical	methods.	(see	synthesis	slide	later)	

					—	Flat	distribu4on	in	Energy	-	[0,	10	]	MeV	-	and	posi4on	in	Juno.
					—	10	%used	for		valida4on

					—	Each	version	(e.g.	hyperparameter	configura4on)	completed	in	4	days	on	a	single	V100	GPU.

					—	13,	10k	events,	tes4ng	samples	(E	=	0.3,	0.6,	1,	2,	…,	10	MeV)	
					—	Tested	several	configura4ons	of	the	readout	electronics.	

Essen4ally	valid	for	all	
algorithms	presented	today.

	One	caveat:	planar	projec4on.	Can	we	do	beter	if	we	keep	spherical	?		
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  Graph neural networks                                                         (arXiv:2101.04839v2) 

	Graph	structure:	more	flexible	way	to	combine	Nodes	informa4on	than	CNN	filters	with	Pixels.	
JUNO	:	the	way	PMTs'	informa4on	is	treated	can	be	invariant	under	'transla4ons'	over	the	sphere.

ComputaDon	limitaDon:	cannot	link	all	17600	LPMTs	together	or	
even	have	one	PMT	per	node.	

•	First	layer	:		use	HEALPix	algorithm	to	define	3072	iden4cal	regions	(pixels	=	nodes)

					HEALPix	also	convenient	for	pooling	is	subsequent	layers.	

Main	characterisDcs	

•	Convolu4onal	Graph	NN	based	on	DeepSphere	and	VGG-16
Convolu4on	:	Chebyseh	convolu4onal	layers.

• Nodes	input	feature	:		
							Total	charge	in	each	pixel	(∑PMT)		
								Earliest	thit	in	the	pixel.

5-6	LPMT	per	pixel

•	One	training	:	22h	on	a	single	V100	GPU.		

	Performance:	similar	to	classical	methods.	(see	synthesis	slide	later)	

		One	limitaDon:	each	node	linked	only	to	its	direct	neighbours	;	weight	based	on	distance	
between	connected	nodes.

@	Subatech	:	development	of	a	GNN		
inter-connec4ng	nodes	from	all	over	the	sphere.	
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  Graph neural networks                                                         (arXiv:2101.04839v2) 
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 Methods with engineered inputs (iso Q & t from all PMTs) 

Can	the	necessary	info	actually	be	contained	in	a	small	set	of	engineered	variables	?
=>	Designed	91	‘'aggregated''	variables,	correlated	to	the	EIBD	&	XIBD,	based	on	the	knowledge	of	what	
happens	in	JUNO	when	an	IBD	occurs	(completed	by	simula4on	studies).	Exemples	:

• Total	charge	in	the	event	+	number	of	hit	PMTs	
						Quasi	propor4onal	to	interac4on	E.	

•	Percen4les	of	the	distribu4on	of	the	
					Q	per	PMT,	and	of	the	distribu4on	of	thit.								
					Shaped	by	E	and	X	of	the	interac4on.		• Variables	linked	to	XIBD	(Q	&	t	barycenters	of	PMT	posi4ons)				

					Helps	to	exploit	the	dependence	on	posi4on.	

One	BDT	&	one	FCDNN	developed	to	exploit	these	variables.	
• Compared	subsets	of	the	91	variables:				
				Select	best		(30	variables)

(arXiv:2206.09040v2 )

nPE ∝ Q 
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	ML	reconstruc4on	methods	appear	to	reach	the	needed	resolu4on

	Performance	in	the	same	ballpark	as	classical	methods.	Some	hope	to	eventually	do	beter.

 Performance and discussion
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	Now	that	the	poten4al	of	ML	is	established	:	crucial	to	start	working	on	reliability

● So	far,	training	samples	from	simula4on.	Will	be	improved	using	real	IBD-less	data.		
					Calibra4on	sources,	beta	decays	from	environmental	radioac4vity,	…	

● There	might	be	in	such	modelled	samples	informa4on	absent	from	IBD	events	in	real	data.	
				If	it	is	used	by	ML	algorithms:	poten4al	biases	in	physics	results	!	

•	Even	more	cri4cal	if	we	try	to	improve	performance	using	the	full	Waveform	informa4on.	

● Remember:	we	need	to	understand	the	E	spectrum	very	precisely.	

=> Even	subtle	discrepancies	between	modelled	and	real	data	must	be	an4cipitated.	

 Performance and discussion
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 ML reliability : first steps at JUNO. 

	1.	Start	with	ways	reconstrucDon	biases	are	usually	dealt	with	in	HEP.	

		Probe	the	scale	of	the	problem:	develop	many	methods,	hope	not	all	biased	the	same	way.

	Seek	where	differences	come	from.	Which	
informaDon	used	by	which	method	?

•	Scale		~	Varia4on	in	results	of	the	oscilla4on	analysis,	performed	on	the	same	IBD	sample.

•	Overlap	and	differences	between	methods.		
			Requires	to	include	all	methods	in	JUNO’s	soTware.	
			(work	on-going	at	Subatech)

•Energy	es4mators	from	various	methods

Use	event	per	event	comparison,	to	evaluate		
e.g.	Mutual	informa4on	between:

•	Es4mators	and	various	engineered	variables.

	Test	stability	of	ML	methods	vs.	parameters	of	the	simulaDon

•	Varied	within	uncertain4es	evaluated	aTer	adjustements	based	on	real	data.		
•	Re-training	un4l	independent	from	MC	tuning.	

2.	Develop	ML	methods	to	idenDfy	systemaDcally	scenarios	a	physicist	might	not	think	of	?

Eclass-Etrue 

E B
D

T-
E t

ru
e 

Correlation between 2 methods

	Include	real	data	control	samples	in	the	validaDon	and/or	training
•	Ex:	train	on	best	modelled	data,	verify	on	calibra4on	sources	(E	and	X	are	known),	retrain	on	them.



(Q,t)1 
. 
. 
. 
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+
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Reconstruction 
- Likelihood ?  
- CNN ? 
- GNN ? 
- BDT ? 
- FCNN ? 
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IBD sample
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    Simu

 An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)
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Aim:	incorporates	the	extensive	real	data	samples	used	by	JUNO	to	calibrate,	tune/complement	
simula4ons,	understand	the	detector…	

•	Calibra4on	sources	(radioac4ve	decays	with	well	known	Energy	and	posi4on)	;		
•	Background	from	natural	radioac4vity	;

…	into	an	algorithm	that	automa4cally	generates	discrepancies	that	could	s4ll	bias	JUNO's	results.			

If	these	distor4on	paterns	look	physically	sound	=>	derive	systema4c	uncertain4es	from	this.	
If	none	are	found	=>	a	proof	of	robustness	for	the	atacked	reconstruc4on	method.	

Adapta4on	of	‘'AI	Safety	for	High	Energy	physics’’,	B.	Nachman	(LBL,	Berkeley),	C.	Shimmin(Yale	U.),	arXiv:1910.08606



 An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)

20
Breaks the reconstruction ;  
Regularises with Control samples. 

Loss : 

Data Control samples

+ + + +
+Adv 

NN
G

(Q,t)1 
. 
. 
. 

(Q,t)17000

(Q+𝛿,t+𝛿)1    

. 

. 

. 

(Q+𝛿,t+𝛿)17000

Reconstruction 
- Likelihood ?  
- CNN ? 
- GNN ? 
- BDT ? 
- FCNN ? 

Erec(Q+𝛿,t+𝛿) ;

E r
ec

(Q
+𝛿

,t+
𝛿)

 
Etrue 

IBD sample

Observable ~f(Q+𝛿,t+𝛿)

+ Real 
    Simu

Reminder :

Aim:	incorporates	the	extensive	real	data	samples	used	by	JUNO	to	calibrate,	tune/complement	
simula4ons,	understand	the	detector…	

•	Calibra4on	sources	(radioac4ve	decays	with	well	known	Energy	and	posi4on)	;		
•	Background	from	natural	radioac4vity	;

…	into	an	algorithm	that	automa4cally	generates	discrepancies	that	could	s4ll	bias	JUNO's	results.			

If	these	distor4on	paterns	look	physically	sound	=>	derive	systema4c	uncertain4es	from	this.	
If	none	are	found	=>	a	proof	of	robustness	for	the	atacked	reconstruc4on	method.	

Adapta4on	of	‘'AI	Safety	for	High	Energy	physics’’,	B.	Nachman	(LBL,	Berkeley),	C.	Shimmin(Yale	U.),	arXiv:1910.08606
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	Presently	under	development,	i.e.	treaDng	these	issues	:

•	Number	of	inputs	to	modify	>	35000.	Ex:	Qi,ti	->	Qi+𝛿Qi	,	ti	+𝛿ti	for	each	PMT	i.	

•	What	control	variables	?		
	Interac4on	Energy	and	Posi4on,	engineered	variables,	raw	PMT	signal	(Q,	t,	waveform),	…	??

•	What	Loss	Func4on	to	yield	relevent	distor4ons		?	(e.g.	random	varia4ons	may	not	bias	physics	results.)

	Find	a	systema4c	way	to		modify	Q	and	t,	learn	only	the	parameters	of	a	func4on.	

Also	a	way	to	guide	distor4ons	toward	‘'physical''	ones.		

•	What	control	samples	?	

Copious	calibra4on	data,	but	must	be	representa4ve	enough	of	the	physics	data.

•	Generality	of	the	Adv	NN	(if	not	need	one	NN	per	reconstruc4on	algorithm).	

 An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)
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JUNO’s	main	goal	:	Neutrino	Mass	Ordering	(data	taking	start	:	2024	;	main	results	:	2030)

Takes	a	very	precise	and	well	understood	reconstrucDon	of	reactor	anDneutrinos	Energy

Performant	classical	reconstrucDon	methods	have	been	developed,	as	well	as	several	ML	
methods	that	perform	in	the	same	ballpark,	with	hopes	to	improve.

ML	reliability:	an	issue	JUNO	starts	to	work	on	(involvment	of	Subatech’s	𝜈	&	calculus	groups).

 Key takeaways 

 Questions session…

More	on	JUNO	?

More	details	on	ML	methods	at	JUNO	?

More	on	ML	reliability	at	JUNO	?	

….

More	Neutrino	physics		?
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Back up slides 
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More on JUNO
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  Neutrino (𝜈) physics in less than a nutshell. 

The	Standard	Model	of	par4cle	physics	lacks	fine	answers	to	some	fundamental	ques4ons	
Ex:	Precise	origin	of	Mass	?	Why	has	an4maJer	disappeared	from	the	early	Universe	?

Studying neutrino physics can help answering them.
— Neutrinos are elementary particles.
— Produced naturally in stars, radioactive decays, …

Each second:  
 10000 billions solar 𝜈's thru your head. 

— 3 known 𝜈 flavors, associated to the lepton that’s also produced when a 𝜈 is produced.   
— 3 possible quantum mass states : the relationship with flavor states is not well known

Mass states
Flavor states

— Determining the Neutrino Mass Ordering  
(Normal or Inverted) is one of the hottest 
questions in particle physics.  

— This is JUNO’s main objective.  
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 Neutrino Mass Ordering with the JUNO experiment.  

All over the World, many experiments (will soon) try to determine NMO.
Most use neutrino oscillation, a phenomenon providing a lot of info. on neutrino physics

Spontaneous change of flavor between creation & detection. 

JUNO: try to determine NMO via the inprint 
of oscillation on the Energy spectrum of 
antineutrinos produced by nuclear reactors. 

Production in reactor 

2015

Detection

52.5 km  
𝜈e disappear (oscillate into other flavors). 

=> Necessits to reconstruct the Energy of the 𝜈e with an extreme precision. 

NMO determination:   
detecting the very small  

dephasing between NO and IO
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  The Jiangmen Underground Neutrino Observatory (JUNO) 

One of the 4 major neutrino physics next generation experiments. 
— A 35 m diameter sphere filled with Liquid Scintillator (20 kt).
— Readout by a double calorimetric system :  
        17600 20-inch and 25600 3-inch PMTs.
— Under construction in China, 700 m underground. 

Data taking expected to start late 2024. 
— International collaboration:   
        18 countries, 75 institutes, 650 scientists.  
— A very rich, multipurpose physics program. 
        Goes far beyond MO determination we focus on here. 

  Reactor       measurement principle ( EIBD, XIBD)
35 m

— Collect signals seen in all PMTs hit by Scint. Photons 
 (more rarely: Cherenkov photons) 

× 43200 PMTs
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  Graph neural networks   Preliminary ! 
Under development @ Subatech.  

	Energy	beter	reconstructed	if	interac4on	posi4on	is	known	(+useful	for	many	tasks	in	JUNO)		

PMT	hit	4mes:	the	crucial	informa4on	here.		
  

Comparing	hit	4mes	of	opposite	regions										
(and	over	the	full	detector)	is	key.	

Previous	algorithms:	global	detector	informa4on	gathered		via	successive	poolings.	

From	the	start	(1st	layer),	link	nodes	from	all	over	the	sphere,	while	trying	to	keep	local	info.	

   =>  Development	at	Subatech	of	an	alterna4ve	GNN
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 JUNO : an extensive physics programme

Besides the reactor neutrino program, JUNO will study several fields.

Atmospheric neutrinos — Neutrino physics, like NMO.

Geoneutrinos — Geosiences. 

Solar neutrinos — Neutrino physics, astrophysics.   

Core Collapse Supernovea. 

Diffuse Supernovae Neutrino Background. 

Sterile Neutrinos Searches using TAO near detector

Nuclear reactor physics using TAO near detector

Neutrino Physics beyond NMO :  
Precision study of the oscillation 
Physics beyond the standard model via 
evidence of additional neutrino states 
Other new physics studies. 
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
"
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
"
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
"

Acrylic Vessel
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
"
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 More on JUNO

From "JUNO Current status and prospects’’,B. Jelmini @  LLWI 2023 
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More on performance
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 Vertex resolutions and biases

(2 -channel case, still valid in the 6-channel case).  

Importance of DAQ effects. VGG

Essentially valid for other methods.

Global

Generically :  
• biases of a few mm. 
• up to ~20 mm for classical. 
• ML in general a bit better. 
• Actually: bias sometimes in different regions for ML and classic        
              => possible compensation, opportunity to understand origin
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Vertex bias, classical methods. 
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  Energy resolution and bias. 

(2 -channel case, still valid in the 6-channel case).  Global
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 Energy reconstruction and bias with aggregated variables. 

Classical methods
2.864712

Generically :  
• Res: Similar to PMT-wise 

methods 
• Bias : slightly worse at very 

low E (in this case) 
• Bias of classical methods: 

• Same remarks as for 
vertex reconstruction 

• Below 0.3% 
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 Energy reconstruction with aggregated variables. 
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 Computing performance (ResNet-J, VGG-J, GNN-J)

GNN Subatech : 0.5 M (far less param, since no dense layer) 
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 Methods with engineered inputs (iso Q & t from all PMTs) (arXiv:2206.09040v2 )
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More on Methods : 
Archi, hyperparameters and more. 
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 On VGG-J and ResNet-J

Algorithms: Also tried : AlexNet and GoogleNet

Projection : Have also tried Mercator

VGG-J: 17 layers, and 4 in the dense layers. There, compared with original 
VGG, 2 layers of 4096 nodes have been removed. This reduces by 65 percents 
the number of parameters.    

ResNet-J: ResNet chosen in order to avoid overfitting although far more layers. 
The residual mapping is easier to optimize (not the full amplitude of the weights).

Hyper param: probably Grid search.  
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 On GNN 1

They also tried one PMT per pixel, but no better performance. 
This is an undirected graph.

À quoi servent les liens et la matrice d’adjacence, sachant les fitres K=5 ? 
Vraiment de liens avec seulement les premiers voisins ?  

Inspired by VGG-16. Minor modifications in the number of layers and 
filters (brought a 5% improvement). 

Hyperparameter : manual search. Not enough CPU to do more… 
Pooling layers divide Nside by 2 -> Ncell = 12Nside2 divided by 4.
For this one : loss = MAPE
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 FCDNN, Aggregated variables. Hyperparameters.
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  Graph neural networks   Preliminary ! 
Under development @ Subatech.  

4 serial layers and 4 ResNet blocks. 
— Number of trainable parameters :  100k to 1.5 M 
— Main hyperparameters :  number and nature var on each vtx, each link, 12 layers, loss (MSE, aussi 
testé relatives), Vtx or E and Vtx, Batch size (32-64 memory !), n epoch : no early stop so 500, learning rate 
(=   1e-8 + decay = *0.99 at each epoq => Very small, but exploded ) and variation, 
— Why we decided to learn slow : numerical instability… Due to aggregation function (since 1000 links) 
— ADAM (SGD  tended to get stuck in local mins) 
— Batch size 8 (memory), 800 per epoch.  

— At end of epoch look at loss on validation, keep current model if loss better. At the end, we kept the 
best of all selected this way, plus the last model (useful for stability studies).     

— Size : 35G in training phase. Cause : very big adjacency matrix (essentially empty, but need memory 
allocation) 
— Inference time: 100 ms for inference.  
— Training time : 15-92h  A100, 40G GPU

Also : bi-directionnal links (mirror variables)
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 Methods with engineered inputs (iso Q & t from all PMTs) 

Loss function for the  FCDNN

  Mean Absolute Percentage Error

y = true E y = reconstructed E ^

(arXiv:2206.09040v2 )
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Reliability : ML methods
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This adversorial method is thought as an adaptation of 

arXiv:1910.08606

In a nutshell

— Adversorial attack on a classifier F(J) identifying S vs. B jets based on ~200 input variables. 
— Finds how to modify each Ji into a Ji' so that the distribution of the score F(J') looks like the 
distribution of background events even when events are signal events. 

— Control: the same modifications are applied to data control samples : the distribution of 
some observables of interest must be stable enough to not change data/MC quality.   

The original method by Nachman et al.
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Interesting features of this method

— Automated perturbations to a large number of inputs (no need to « think » to all of them). 
— All inputs shifted simultaneously : can reveal effect of subtle correlations. 
— If it indeed manages to cause F(J)≠F(J+𝛿), then a systematic uncertainty can be derived. 

Adversorial NN trained by minimising two Loss functions : 

— Allows to determine midmodelling effects 𝛿i’s that can’t be detected with control data.

The original method by Nachman et al.
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 On ML reliability : have we considered other methods ? 
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 On ML reliability : have we considered other methods ? 
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 Loss functions : 

Idea: try to decorrelate Erec(Q+𝛿,t+𝛿) from Etrue. 

— A first idea… 

— Probably necessary at some point to find something smarter. 
— Actually, we’ll probably need to find ways to guide the  (𝛿Q,𝛿t) perturbation pattern  
      - Cannot simply be random variations between PMTs (or will only affect the E resolution).  
      - Ex : A loss that would favor a wrong Mass ordering ? 
      - Ex : something causing patterns involving in some way the response linearity ?      
               (like the Q linearity in the electronics) ?   
      - Must remain rather simple (batch learning). 

One technical challenge : too difficult to regress on 34000 input parameters. 
—> Find a systematic way to  modify Q and t.  
       We plan to design  a function with a limited number of learnable parameters. 

For each PMT i
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 Loss functions : 

 Here, we need to determine what control data samples to use, and what observables. 
Observables
— Energy ? 
— Vertex ? 
— Aggregated features like this used in this recent [1] JUNO publication ? 
— Lower level ?

[1] Ex: ''Energy reconstruction for large liquid scintillator detectors with ML techniques: aggregated features approach’’, 
Gavrikov et al, Eur.Phys.J.C 82 (2022) 1021. 

Data control samples ?
— A lot of calibration data will be available : but need to be sure they are representative enough 
of the physics data we need. 

— Physics runs data : enriched background samples (Ex : cosmogenics after-muon events, …)
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Methods	providing	the	regressed	quan4ty	+	an	uncertainty.	

		

A	few	examples	we	looked	at	and/or	that	have	been	menDon	within	JUNO	

The	adapta4on	to	>	35k	nuisance	parameters	is	not	obvious.

Not	convinced	such	methods	would	indicate	directly	the	scenarios	at	detector	level,	that	
s4ll	can	change	the	oscilla4on	analysis,	even	when	all	control	data	is	used	to	train	them.	

Pivot	method	[3]	:	an	Adv	NN	to	eliminate	the	dependence	of	an	algorithm	on	nuisance	parameters.	

Domain	adapta4on	[1,	2]	:	Tools	trained	to	produce	discrimina4ve	features	that	are	the	same	in	source	
and	target	domains.	

GANs

[1]	«	Learning	to	Pivot	with	Adversarial	Networks	»,	Gilles	Louppe(NY	U.),	Michael	Kagan,	Kyle	Cranmer(NY	U.),	
arXiv:1611.01046
[2]		«	Unsupervised	Domain	Adapta4on	by	Backpropaga4on»,	Y.	Ganin	and	V.	Lempitsky,	Proceedings	of	the	32nd	
Interna4onal	Conference	on	Machine	Learning,	htps://proceedings.mlr.press/v37/ganin15.pdf

[3]	«	Adversarial	Discrimina4ve	Domain	Adapta4on	»,	E.	Tzeng,	J.	Hoffman,	K.	Saenko,	T.	Darrell,	arXiv:1702.05464

Also	see	htps://iml-wg.github.io/HEPML-LivingReview	
Esp.	sec4ons	on	:	Decorrela4on	methods,	Genera4ve	models	and	density	es4ma4on,	uncertainty	
quan4fica4on,	etc.	

https://proceedings.mlr.press/v37/ganin15.pdf
https://iml-wg.github.io/HEPML-LivingReview
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e-
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Detection via  
Inverse Beta Decay (IBD)
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Sphere 

Inputs to reco algorithms  
• Charge Qi ∝ #Photons that hit PMTi   
• ti ∝ Estimated time of 1st hit in PMTi   
• Other Waveform parameters….

Seek coincidence between  
the detection of a e+and that of  

a n, 𝝙t < 200 𝜇s


