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Neutrino (v) physics in less than a nutshell.

Known elementary particles (Standard Model)
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Is v the heaviest or the lightest ?

® Determining the Neutrino Mass Ordering
(Normal or Inverted) is one of the hottest
questions in particle physics.
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¢ This is JUNO’s main objective.




Neutrino Mass Ordering with the JUNO experiment.

Exploit Neutrino Oscillation Spontaneous change of flavor between creation & detection.
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=> Necessits to reconstruct the Energy of the Ve with an extreme precision.



Neutrino Mass Ordering with the JUNO experiment.

Exploit Neutrino Oscillation Spontaneous change of flavor between creation & detection.

Measure the inprint of oscillation on the Energy
spectrum of antineutrinos produced by nuclear reactors.
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=> Necessits to reconstruct the Energy of the Ve with an extreme precision.



The Jiangmen Underground Neutrino Observatory (JUNO)

» One of the 4 major neutrino physics next generation experiments.

e A 35 m diameter sphere filled with Liquid Scintillator (20 kt).
e Readout by a double calorimetric system :

i i 17600 20-inch and 25600 3-inch PMTs.
// - ///* e Under construction in China, 700 m underground.
| wow . . Data taking expected to start late 2024.

|

. —>
| » Reactor V. measurement principle ( goal: Esp, Xiep)

ww - Cherenkov photon

Inputs to reco algorithms
- Charge Qi « #Photons that hit PMT;
- ti « Estimated time of 1st hit in PMT;
- Other Waveform parameters....
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Classical Energy reconstruction at JUNO

Important feature in subatomic physics: measurements most often rely on the comparison
of data with models stemming from very detailed and realistic simulations.

e Tuned and/or complemented with real data control samples (e.g. from calibration sources).

( I'll refer to “Modelled" data in this presentation)

In JUNO, a rather “simple", homogenous detector, this allows to predict the distribution of
charge & hit times all over the PMTs, given the true E & Position of the IBD.

=> We can regress the Energy by maximising a Likelihood based on those probabilities.
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Classical Energy reconstruction at JUNO

Classical methods use low level data (Q;, t;) from all PMTs , make minimal assumptions.

=>» The loss of detector information and generality is small

=» Classical reconstruction performs very well.
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Motivation for ML methods

Resolution and bias in the E;gp reconstruction must be understood very precisely.

=» Alternative methods brings robustness: not all depend the same way on mismodelling effects.

DL methods: Might use information classical methods don’t; a1t Wavg&){m in
Might rely less on assumptions. |

e Most often use low level signal : (Q,t) from every PMTs
e Or even the lowest : full Waveform information.

e Besides a potential gain on resolution and bias : execution speed !

Thit t

Tempting to use DL since JUNO PMT Q PMT thit
events look like (spherical) images. S iBD yehex

IBD vertex ':' 6165 MeV
Can we benefit of the advances that 0700 MY e v
occured over the last decade in

image recoginition ?

Presented today: some methods applied to reactor antineutrino reconstruction.



Convolutional Neural Networks (arXiv:2101.04839v2 ; arXiv:2205.04039v1)

Input to the CNN : N-channel image; each pixel is a PMT. Ex:

CNNs work on d-dimensional domains.

§ LR Spherical image -» planar image.
G P Bt Projection conserving distance
g g I between PMTs.
(b) Charge channel. (c) First hit time channel.

Strategy: slightly adapt well established algorithms to JUNO : VGG-J and ResNet-J

e One key question : necessary level of complexity ? (layers, parameters VGG-J  ResNet-J

Layers 17 53

e Comparing these two algorithms answers it to a large extent.
Parameters 26310035 38352403
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Convolutional Neural Networks

(arXiv:2101.04839v2 ; arXiv:2205.04039v1)

Input to the CNN : N-channel image; each pixel is a PMT. Ex:

CNNs work on d-dimensional domains.

" S | Spherical image -» planar image.
s o S Projection conserving distance
T I between PMTs.
(b) Charge channel. (c) First hit time channel.

Strategy: slightly adapt well established algorithms to JUNO : VGG-J and ResNet-J

e Optimisation 1 : Architecture complexity (e.g. # of layers & parameter: VGG-J  ResNet-J
These 2 algorithms vary a lot in this respect. Layers 17 53
C e Parameters 26310035 38352403

e Optimisation 2 : Inputs !

First version : 2-channel input (Qi, tfirst)

But : 2 types of Large PMTs in JUNO : separate them. | 6-channel input:
Also use the time of the second it in each PMT. (Qu, thirst1, tsec1, Q2 tfirst2, tsec2)

Two types of 20-inch PMTs : Dynode MCP

Detection efficiency [%] 284  30.1
5000 Hamamastu Dynode PMT Dark noise rate [kHz] 153 29.6

12612 NNVT Micro-channel Plate (MCP)  Charge resolution [%] = 27.9 329
Transit time spread [ns] 2.8 12.0
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Convolutional Neural Networks (arXiv:2101.04839v2 ; arXiv:2205.04039v1)

Training details: sample of 5 M e* interactions (full simulation of all phenomena in JUNO)

— Flat distribution in Energy - [0, 10 ] MeV - and position in Juno.
— 10 %used for validation

— 13, 10k events, testing samples (E=0.3,0.6, 1, 2, ..., 10 MeV)
— Tested several configurations of the readout electronics.

Essentially valid for all
algorithms presented today.

— Each version (e.g. hyperparameter configuration) completed in 4 days on a single V100 GPU.

Performance: similar to classical methods. (see synthesis slide later)

One caveat: planar projection. Can we do better if we keep spherical ?

12



Graph neural networks (arXiv:2101.04839v2)

» Graph structure: more flexible way to combine Nodes information than CNN filters with Pixels.

JUNO : the way PMTs' information is treated can be invariant under 'translations' over the sphere.

» Computation limitation: cannot link all 17600 LPMTs together or
even have one PMT per node.

e First layer : use HEALPix algorithm to define 3072 identical regions (pixels = nodes)
5-6 LPMT per pixel
HEALPix also convenient for pooling is subsequent layers.

NSide = 1 NSide =2

» Main characteristics

e Convolutional Graph NN based on DeepSphere and VGG-16
Convolution : Chebyseh convolutional layers.

e Nodes input feature :
Total charge in each pixel (3PMT)

Earliest thit in the pixel. e One training : 22h on a single V100 GPU.

@ North Pole
@ Spherical Pixel Center

» Performance: similar to classical methods. (see synthesis slide later)

»  One limitation: each node linked only to its direct neighbours ; weight based on distance
between connected nodes.

W, = exp _Hv, _J”") . d2 = Z |v; — v; H .
@ Subatech : development of a GNN 4 212 ' 1~ Pill2

(vi,v5)EE
inter-connecting nodes from all over the sphere. 7 13



Graph neural networks (arXiv:2101.04839v2)
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Methods with engineered inputs (iso Q & t from all PMTs)  (arXiv:2206.09040v2)

Can the necessary info actually be contained in a small set of engineered variables ?

=>» Designed 91 “aggregated” variables, correlated to the E;zp & Xisp, based on the knowledge of what
happens in JUNO when an IBD occurs (completed by simulation studies). Exemples :

e Total charge in the event + number of hit PMTs e Percentiles of the
Quasi proportional to interaction E. and of the distribution of thj.

e Variables linked to Xisp (Q & t barycenters of PMT positions) Shaped by E and X of the interaction.

Helps to exploit the dependence on position.

One BDT & one FCDNN developed to exploit these variables.

e Compared subsets of the 91 variables:
Select best (30 variables)

Input layer - Hidden layers
—E=102MeV —E=502MeV -~ E = 9.02 MeV 256 units - 256 units :
hy e . e hie -
1 7 —_— — . aan - .
AccumCharge —» (ReLU @L@ 6@9 .
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300 | nPMTs > RewA 6@ S 6@ :\ MAPE loss
S~ 1 &) . . B -
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g 05 200 ! 3 (s , . )linear —» Edep
&7 p= ° . e /\ o
™ (s
\ )
0.25- 1001 (. ¢ * //y .
. ° ° ooe °
| 0- - htgso —> RLU/ :kLy ‘GLD
0 0 1 2 3 4 5 6 95% i e o o &

2 . .
nPE « Q ' ' 15



Performance and discussion

: 3
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o)
ML reconstruction methods appear to reach the needed resolution EE =3% @ E=1 MeV

Performance in the same ballpark as classical methods. Some hope to eventually do better.
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Performance and discussion
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Now that the potential of ML is established : crucial to start working on reliability

e So far, training samples from simulation. Will be improved using real IBD-less data.
Calibration sources, beta decays from environmental radioactivity, ...

e There might be in such modelled samples information absent from IBD events in real data.
If it is used by ML algorithms: potential biases in physics results !

® Even more critical if we try to improve performance using the full Waveform information.

e Remember: we need to understand the E spectrum very precisely.

=>» Even subtle discrepancies between modelled and real data must be anticipitated.

17



ML reliability : first steps at JUNO.

1. Start with ways reconstruction biases are usually dealt with in HEP.

Probe the scale of the problem: develop many methods, hope not all biased the same way.
e Scale ~ Variation in results of the oscillation analysis, performed on the same IBD sample.

Test stability of ML methods vs. parameters of the simulation

e Varied within uncertainties evaluated after adjustements based on real data.

e Re-training until independent from MC tuning.

Include real data control samples in the validation and/or training
e Ex: train on best modelled data, verify on calibration sources (E and X are known), retrain on them.

Seek where differences come from. Which
information used by which method ?

e Overlap and differences between methods.
Requires to include all methods in JUNO’s software.
(work on-going at Subatech)

Use event per event comparison, to evaluate
e.g. Mutual information between:

eEnergy estimators from various methods
e Estimators and various engineered variables.

EespT-Etrue

0.8

|
o

‘(nIIIIIIIIIIIIIIIlIlIlIIIIIIIIIII

Correlation between 2 methods

- fx

1 l 1 1 1 l 1 1 1 l 1 L 1 l 1 1 l l

-0.6 -0.4 0.2 0 0.2 0.4
Eclass' Etrue

2. Develop ML methods to identify systematically scenarios a physicist might not think of ?
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An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)

» Aim: incorporates the extensive real data samples used by JUNO to calibrate, tune/complement

simulations, understand the detector...

e Calibration sources (radioactive decays with well known Energy and position) ;

e Background from natural radioactivity ;

... into an algorithm that automatically generates discrepancies that could still bias JUNO's results.

If these distortion patterns look physically sound =» derive systematic uncertainties from this.
If none are found => a proof of robustness for the attacked reconstruction method.

» Adaptation of “Al Safety for High Energy physics”’, B. Nachman (LBL, Berkeley), C. Shimmin(Yale U.), arXiv:1910.08606

(Q,1)1 mmmmngl R cconstruction
@ - Likelihood ?

- CNN 7 _ EreC(Q,t) :

- GNN?
: SeiC PR

Q17000 — 5 B FCNN 7

IBD sample

Erec(Q,t)

+

+

Data Control samples

+ +

+ Real
Simu

>

Observable ~f(Q,1)
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An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)

» Aim: incorporates the extensive real data samples used by JUNO to calibrate, tune/complement
simulations, understand the detector...

e Calibration sources (radioactive decays with well known Energy and position) ;
e Background from natural radioactivity ;

... into an algorithm that automatically generates discrepancies that could still bias JUNO's results.

If these distortion patterns look physically sound =» derive systematic uncertainties from this.
If none are found => a proof of robustness for the attacked reconstruction method.

» Adaptation of “Al Safety for High Energy physics’’, 8. Nachman (LBL, Berkeley), C. Shimmin(Yale U.), arXiv:1910.08606

o
X
) IBD sample Data Control samples
S t
Q.01 (Q+8,t+6)1 N o® + 4t
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— - Likelihood ? LL| 32 +
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(Q,1)17000 (Qe+6,t4+6)17000 Etrue Observable ~f(Q+5,t+5)
Reminder :
: l N
: p— 20
Loss: L = £Adv + £Reg - , | e . 1
. 5 Amiy, | Amgz,
Breaks the reconstruction ; N TN T

Regularises with Control samples. E. (MeV) 20



An Adversorial NN @ JUNO to explore ML reliability (under dev @ Subatech)

Presently under development, i.e. treating these issues :

e Number of inputs to modify > 35000. Ex: Q;,ti-> Q;+6Q;, ti+ot; for each PMT i.

J Find a systematic way to modify Q and t, learn only the parameters of a function.

5 . . . /1 . "
[ 5?] = F(Qi,t;, X;,Y;, Z;, Eg2e, Vile, ) Also a way to guide distortions toward “physical" ones.

e What Loss Function to yield relevent distortions ? (e.g. random variations may not bias physics results.)

e Generality of the Adv NN (if not need one NN per reconstruction algorithm).

e What control samples ?

[ Copious calibration data, but must be representative enough of the physics data.

e \What control variables ?
[J Interaction Energy and Position, engineered variables, raw PMT signal (Q, t, waveform), ... ??
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Key takeaways

JUNO’s main goal : Neutrino Mass Ordering (data taking start : 2024 ; main results : 2030)

Takes a very precise and well understood reconstruction of reactor antineutrinos Energy

Performant classical reconstruction methods have been developed, as well as several ML
methods that perform in the same ballpark, with hopes to improve.

ML reliability: an issue JUNO starts to work on (involvment of Subatech’s v & calculus groups).

Questions session...

More Neutrino physics ?

More on JUNO ?
More details on ML methods at JUNO ?

More on ML reliability at JUNO ?
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More on JUNO



Neutrino (v) physics in less than a nutshell.

The Standard Model of particle physics lacks fine answers to some fundamental questions

Ex: Precise origin of Mass ? Why has antimatter disappeared from the early Universe ?

Studying neutrino physics can help answering them. I d )
— Neutrinos are elementary particles. - @ @I|- @I @ |
— Produced naturally in stars, radioactive decays, ... c J =) = -

========
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— 3 known v flavors, associated to the lepton that’s also produced when a v is produced.
— 3 possible guantum mass states : the relationship with flavor states is not well known

Flavor states
Mass states

— Determining the Neutrino Mass Ordering
(Normal or Inverted) is one of the hottest
questions in particle physics.

— This is JUNQO’s main objective.
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Neutrino Mass Ordering with the JUNO experiment.

All over the World, many experiments (will soon) try to determine NMO.
Most use neutrino oscillation, a phenomenon providing a lot of info. on neutrino physics

Spontaneous change of flavor between creation & detection.

Ve 7V, iVe TV Y TV,
B
JUNO: try to determine NMO via the inprint o JUNO
of oscillation on the Energy spectrum of R
antineutrinos produced by nuclear reactors. oiapn T 2Xasaw,
6X2.9GW,, /-° "%9&
P S ,f,’l«‘
Production in reactor ~ Detection
1001<1()3 . 100-_6 years of data taking —— No oscillations
- 6 years of data taking 52.5 km > O”|y5°|a:term
80 isappear (oscillate into other flavors).  *f {..—— Inverted ordering |
oo A N
: o o YV -
5l NMO determination: 2 ol
. _ detecting the very small e Jsin? 26,
200 dephasmg between NO and 10 *| |~
.......................................................................................... - Am,
Ey, (MeV) Ey, (MeV)

=> Necessits to reconstruct the Energy of the ve with an extreme precision.
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The Jiangmen Underground Neutrino Observatory (JUNO)

» One of the 4 major neutrino physics next generation experiments.

— A 35 m diameter sphere filled with Liquid Scintillator (20 kt).
— Readout by a double calorimetric system :
17600 20-inch and 25600 3-inch PMs.
ij AL — Under construction in China, 700 m underground.
AE e é Data taking expected to start late 2024.
” — International collaboration:
18 countries, 75 institutes, 650 scientists.
| — A very rich, multipurpose physics program.
1l \ Y Goes far beyond MO determination we focus on here.

35 m N
» Reactor p, measurement principle ( Eigp, Xiep)

— Collect signals seen in all PMTs hit by Scint. Photons

(more rarely: Cherenkov photons)

Waveformin X 43200 PMTS

PMT,

mww - Cherenkov photon

Inputs to reco algorithms
- Charge Qi « #Photons that hit PMT;

: ) * i « Estimated time of 1st hit in PMT;
thit t L Other Waveform parameters.... Liquid Scintillator

Sphere



Preliminary !
Under development @ Subatech.

Graph neural networks

Energy better reconstructed if interaction position is known (+useful for many tasks in JUNO)
Ot 4

PMT hit times: the crucial information here. ol il oo —-(G=
Comparing hit times of opposite regions Yl:

, b4
(and over the full detector) is key.

Previous algorithms: global detector information gathered via successive poolings.

=» Development at Subatech of an alternative GNN

From the start (1st layer), link nodes from all over the sphere, while trying to keep local info.

Fired nodes : Global node :
Linked to their corresponding Mesh Node.

. Inputs : Ex : powers of spherical
Input features : low level signals (Q, thi) harmonics decomposition (spherical image).
Output : Energy & Position.

/68 regional pixels, all connected to each other.

: Engineered features to help inductive bias.
Ex: ratios of relative timings and total charges (same if interaction lies on the link)
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JUNO : an extensive physics programme

Besides the reactor neutrino program, JUNO will study several fields.

X Neutrino Physics beyond NMO :
X Precision study of the oscillation
X Physics beyond the standard model via,
evidence of additional neutrino states
X Other new physics studies.

X Atmospheric neutrinos — Neutrino physics, like NMO.

X Geoneutrinos — Geosiences.

X Solar neutrinos — Neutrino physics, astrophysics.
X Core Collapse Supernovea.

X Diffuse Supernovae Neutrino Background.

X Sterile Neutrinos Searches using TAO near detector

X Nuclear reactor physics using TAO near detector
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More on JUNO

®_JUNO
/ N\
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Civil construction finiéhéd in Dec, 2021

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on JUNO

o - - = - = - . - - . - L. =

KamLAND 1 kton 34% 6% @ 1 MeV 250

Calibration House

JUNO* 20 kton 78% 3% @1 MeV >1300

* Prog. Part. Nucl. Phys. 123 (2022) 103927

Top Tracker (TT):
S S AR, | 3 plastic scintillator layers
i TR TRq Precision muon tracking Central Detector (CD):
L ] N 20 kton Liquid Scintillator (LS)
£ S L R 11 B e Acrylic vessel (¢ 35.4 m)
3 o Light detection system: Steel structure (@ 40.1 m)
17612 20-inch PMTs
25600 3-inch PMTs Water Cherenkov Detector (WCD):
i 35 kton ultra-pure water
‘«.' | 2400 20-inch PMTs
vV e YT T o YT

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on JUNO

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on JUNO

Acrylic Vessel

Steel structure

Connecting rods

(590 in total)
Acrylic vessel —m . 4 .....;..'.,-MWM;!};’.-;*."{.

.....

Lift platform —FL =

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on JUNO

Total photocathode coverage: 77.9%

Photomultiplier Tu

e

-
- v
~ » :

»

"

.....

17612 (CD) + 2400 (veto) 20-inch PMTs 9
Dynamic range: 0 - 100 PE

TR g PO ‘
25600 3-inch PMTs
Dynamic range: 0 - 2 PE
Linear reference for 20” PMTs

20-inch PMTs:
[ ]
Eur. Phys. J. C 82, 1168 (2022) All potted and tested
H _ 1000 . r ° 1
15012 Micro-channel Photon detection 600 Dark count Protection cover
Plate PTMs from 490 efficiency 500 | rate under production
Northern Night Vision & £ 100
Technology (NNVT) £ 5 .
2 | £ 300 3-inch PMTs:
5000 dynode PMTs 2 v S 200 * All potted and tested
from Hamamatsu 2001 HPK 100
Photonics K. K. (HPK) %0 25 30 35 40 % 20 40 60 80 100 | First PMTs installed!
PDE Corrected [%] DCR [kHZz]

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on JUNO

. . 1,04 === = = e e e e .
Calibration system
| L EE L PP PP LT
u}o.gs:—
- 4 sub-systems  JHEP 03(2021)004 S F
$ i Automatic Calibration Unit w 0.96:—
T——ROV guide rai Liquid scintillator non-linearity: 0941
Calibration house -
= S - g * 5 gamma sources 0.2
e man I IE * 2 neutron sources 02
H [ I«-‘ 13 * Continuous 2B spectrum g L L et oo
a 2 - ]
g OF -y SECTTTTLEEEEECTLLTEREEEEEEELEY
Instrumental non-linearity: R pooommmmmmnenee
° TunableUV|aser _0‘20—11llllllléllll:lslllllllIIEI_)llllllll
o Gamma source True gamma energy [MeV]
Dual Calorimetry Calibration* I A AR AR AR AR AR MR
* Use 3-inch PMTs T — B
. g 1 S¥IL e rauenna naasRuSaRa SRS sA AR RS RSRa AR AR R AR RN R
as linear reference g€ I
. G 0.995[ - - - - == === TN smssosssseeoeas
* Correct 20-inch PMT L
T 099f - -rmmmm e I s
channel-wise non-linearity § [ Zeromtum nonin
- Residual NL< 0.3% - voel —— reathyelod et henin
0.3% band
*Yang Han, https://hal.archives-ouvertes.fr/tel-03295420v1 09755 ———mmgimmmnnms

4 5 6
True electron energy [MeV]

From "JUNO Current status and prospects”,B. Jeimini @ LLWI 2023
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More on performance



Vertex resolutions and biases

Global (2 -channel case, still valid in the 6-channel case).

400 - * ¢ DNN
; ¥ BDT
! ResNet-|
300 A
E ] L VGG
c 1 &F
= _
2 2001 T Importance of DAQ effects. VGG
0 1 & 120
F . -
2 :r . 5 . i DN off / TTS off
100 T 0 100 ] = DN off / TTS on
] d . " n N N N _ 4+ DNon/TTS off
— 0- £ 801 ¥ DNon/TTSon
E) I - - <> ¥
. [ - 4
g r ¥ ¥ 1 1 1 S 601 = _
= ¥ E "
0) 1.0 1 i o 40 ] 4 - v v
¢ = 4 2 ‘
. ' e * - » g R
E 0 E F # X & 3 ¥ ¥ u 20 ‘
© ) 0 -
= -501 & € 101
AL B B R BN ENL LR LR R LR | JNN L B BELANL B N BEL NN LR RN AN NN N BELN E - v ¥ - >
1 2 3 4 5 6 7 8 o g ] ; - £ 2 - v - :
Visible energy, MeV o O0T—= e - » »> - -> » >
icallv : 1 2 3 4 5 6 7 8 9
Generica Yy - Visible energy, MeV
* bi f a few mm. : :
biases of a few Essentially valid for other methods.

« up to ~20 mm for classical.
« ML in general a bit better.
- Actually: bias sometimes in different regions for ML and classic

=> possible compensation, opportunity to understand origin 37



Vertex bias, classical methods.

L L I LI I L L I LI I L I L L B B )

TMLE
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Fig. 7. Vertex reconstruction performances. The left, middle and right columns correspond to the QMLE, TMLE and QTMLE methods,
respectively. The top row shows the vertex bias and the bottom row shows the vertex resolution.
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Energy resolution and bias.

Global (2 -channel case, still valid in the 6-channel case).

3 DNN
3.0 - ' )
- %+ BDT
1 = ResNet-J
2.5 I VGG
- ! )
s : 5 GNN-J
S 2.0- 4
a :
< %
N &
1.5 - ¥ o
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Energy reconstruction and bias with aggregated variables.

3
\% " BDT Generically :
¢+ FCDNN . . .
o 251 1% — | | | | « Res: Similar to PMT-wise
g N methods
s 2 + - Bias : slightly worse at very
§ A low E (in this case)
L5 " - Bias of classical methods:
-
—— - Same remarks as fqr
- 03— | | | | | | | | | vertex reconstruction
d o ==z = = = = = = =T = | - Below 0.3%
Py = S
A 021 | | | | | | ] | ]
1 2 3 4 5 6 7 8 9 10
Deposited energy, MeV Vool
o o0 BDT FCDNN
Parameter
a+ Aa 2.573 + 0.097 | 2.316 + 0.139
b+ Ab 0.763 = 0.045 | 0.827 + 0.054
¢+ Ac 0.990 + 0.394 | 1.474 + 0.285
a+ Aa 2.914 + 0.016 | 2.822 + 0.027
, E.. . 2.864712
X Classical methods res
Case a b C E..s Relative improvement

Default 2.614 0.640 1.205 2.948 -
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Energy reconstruction with aggregated variables.

3.24|™BDT
—— FCDNN
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Computing performance (ResNet-J, VGG-J, GNN-J)

Planar CNN Spherical
Architecture BDT DNN  ResNet-J VGG-J GNN-J
Prediction time, sec/100k events <1 <1 235 155 110
Prediction batch size 100000 100000 100 100 10 000
Number of weights 6625 38352403 26310035 353 979
Memory occupied by weights, MB 17 0.073 146 100 4.2
Training time, min/1M events 5 1000 1543 840 265
Training batch size 700 64 64 64

GNN Subatech : 0.5 M (far less param, since no dense layer)
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Methods with engineered inputs (iso Q & t from all PMTs)  (arXiv:2206.09040v2)
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More on Methods :

Archi, hyperparameters and more.



On VGG-J and ResNet-J

X Algorithms: Also tried : AlexNet and GoogleNet

X Projection : Have also tried Mercator

X VGG-J: 17 layers, and 4 in the dense layers. There, compared with original
VGG, 2 layers of 4096 nodes have been removed. This reduces by 65 percents
the number of parameters.

X ResNet-J: ResNet chosen in order to avoid overfitting although far more layers.
The residual mapping is easier to optimize (not the full amplitude of the weights).

X Hyper param: probably Grid search.

Parameter Value
Loss Mean Squared Error
Optimizer Adam (51 = 0.9, B2 = 0.999)

Learning rate Linearly increasing from 0 to 1073 during the first epoch,

then exponential decay to 107°.
Batch size 64
N. Epochs 15

Table 5 — Hyperparameters for VGG-J and ResNet-J.
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On GNN 1

X They also tried one PMT per pixel, but no better performance.
X This is an undirected graph.

X A quoi servent les liens et la matrice d’adjacence, sachant les fitres K=5 ?
Vraiment de liens avec seulement les premiers voisins ¢

X Inspired by VGG-16. Minor modifications in the number of layers and
filters (brought a 5% improvement).

X Hyperparameter : manual search. Not enough CPU to do more...
X Pooling layers divide Nside by & -> Ncell = 12Nside? divided by 4.
X For this one : loss = MAPE

Parameter Value
Loss Mean Absolute Percentage Error
Optimizer Adam (81 = 0.8, B2 = 0.9)
Learning rate Fixed at 0.001 for Nepoen < 3, then exponential decay at rate —0.1.
Batch size 64
N. Epochs 10

Table 6 — Hyperparameters for GNN-J.



FCDNN, Aggregated variables. Hyperparameters.

Optimization of hyperparameters for FCDNN is per-
formed using the BayesianOptimization tuner from the
KerasTuner library for Python [36]. To train the model,
we use TensorFlow [37]. The MAPE loss for reconstructed
energy and true energy is used as a loss function. All input
features were normalized with a standard score normal-
ization. The training process is performed with an early
stopping condition on the validation dataset with a pa-
tience of 25 and with the batch size 1024. Table 2| shows
the search space and the selected hyperparameters.

Hyperparameter Range Selected
Units in input layer 1, 512] 256
Units in hidden layers 11, 512] 256
Number of hidden layers 1, 32] 16
Activation [38-40] ReLU, ELU, SELU ReLU
Optimizer [41,42)] Adam, SGD, RMSprop Adam
Learning rate 10.0001, 0.01] 0.0016
Scheduler type [43] Exponential, None Exponential
Input layer weights initialization »

, , e e normal, lecun-normal, uniform | normal
Hidden layers weights initialization
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MEINNMEA

Graph neural networks

4 serial layers and 4 ResNet blocks.

— Number of trainable parameters : 100k to 1.5 M
— Main hyperparameters : number and nature var on each vtx, each link, 12 layers, loss (MSE, aussi
testé relatives), Vix or E and Vtx, Batch size (32-64 memory ), n epoch : no early stop so 500, learning rate
(= 1e-8 + decay = *0.99 at each epoq => Very small, but exploded ) and variation,
— Why we decided to learn slow : numerical instability... Due to aggregation function (since 1000 links)
— ADAM (SGD tended to get stuck in local mins)
— Batch size 8 (memory), 800 per epoch.
— At end of epoch look at loss on validation, keep current model if loss better. At the end, we kept the
best of all selected this way, plus the last model (useful for stability studies).
— Size : 35G in training phase. Cause : very big adjacency matrix (essentially empty, but need memory
allocation)
— Inference time: 100 ms for inference.
— Training time : 15-92h A100, 40G GPU

d Also : bi-directionnal links (mirror variables)
1 ¢
of |9 —
—~[ |
| |== 3
(01
- 0 —~ 2
2 , 7 o )
c : e [ | ©
L= ( [
H | :' ; ;
' l
(A~ (/\(\/

Under development @ Subatech.
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Methods with engineered inputs (iso Q & t from all PMTs)  (arXiv:2206.09040v2)

Loss function for the FCDNN

Mean Absolute Percentage Error

N A
MAPE — 100% Yi — Vi y=truek 9: reconstructed E
N - |
i—1 |
Input layer - Hidden layers
256 units 256 units

hi e e

: e hi6 -

AccumCharge —» (RelU @L} 6&9 :
nPMTs —>» (ReLU - 6&9 A\ / QLD MAPE loss

. , :
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o
2 .
§ ) linear —» Edep
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™ ™ ° °

49



Reliability : ML methods



The original method by Nachman et al.

This adversorial method is thought as an adaptation of

Al Safety for High Energy Physics

Benjamin Nachman”
Physics Diwvision, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA'

Chase Shimmin®
Department of Physics, Yale Uniwversity, New Haven, CT 06511, USA*
(Dated: October 22, 2019)

arXiv:1910.08606

In a nutshell

— Adversorial attack on a classifier F(J) identifying S vs. B jets based on ~200 input variables.

— Finds how to modify each Ji into a Ji' so that the distribution of the score F(J') looks like the
distribution of background events even when events are signal events.

— Control: the same modifications are applied to data control samples : the distribution of
some observables of interest must be stable enough to not change data/MC quality.
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Data Control samples/
Signal R observables

Ji —— - .y
| F(J) ;
N — |:( )> OWJ) "

Data Control samples/
Signal . observables

A Bkg
J1 —> J1+51 — ="
\JN+5N F(G(J)=J+5) O(J+5)

Adversorial NN trained by minimising two Loss functions :  Lsig = log(1 — f(g(J))).
(

Ebg — /\cls( ( ) (g J)))

(7) 7
» Interesting features of this method Z%bs O (J) -

— Allows to determine midmodelling effects éi's that can’t be detected with control data.

The original method by Nachman et al. Bkg

0" (g(J))?

— Automated perturbations to a large number of inputs (N0 need to « think » to all of them).

— All inputs shifted simultaneously : can reveal effect of subtle correlations.

— If it indeed manages to cause F(J)zF(J+6), then a systematic uncertainty can be derived.
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On ML reliability : have we considered other methods ?

I oL,
e 0 . e 09; @

[> [> E class label y
J

Y
label predictor G,(-:0,)
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feature extractor G¢(-;6y) é}@f‘&(? “
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forwardprop  backprop (and produced derivatives)

.

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.
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On ML reliability : have we considered other methods ?

Pre-training 7 Adversarial Adaptation 7 Testing

source images

source images
+ labels
target image o _ r T
= = domain | Target 1 ' 2 |
= class C | — , larget e class
A = label I CNN + ''9 —
- label 5 I label
L £ ! - 1 = )
- 3 O
2

Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.
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. oss functions :

Idea: try to decorrelate Erec(Q+s,t+5) from Etrge.

1 1 NiBp

L Ady = A\1BD X E (Erec,z' - E'rec) X (Et’r'ue,i — Etrue)
OErec OEtrue NIBD i=1

— A first idea...

— Probably necessary at some point to find something smarter.

— Actually, we’ll probably need to find ways to guide the (6Q),6t) perturbation pattern

- Cannot simply be random variations between PMTs (or will only affect the E resolution).
- Ex : A'loss that would favor a wrong Mass ordering 7
- Ex : something causing patterns involving in some way the response linearity ?
(like the Q linearity in the electronics) 7
- Must remain rather simple (batch learning).

One technical challenge : too difficult to regress on 34000 input parameters.

—> Find a systematic way to modify Q and t.
We plan to design a function with a limited number of learnable parameters.

H 5@ rue rue
For each PMT i [&] = F(Qi ti, X3, Y, Zi, Byt Viiie, ...)
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Loss functions : gy

NR@Q,’C Nobs

: p 2
Cheg = Lregr + Laeg2 t o Legu= 3 > Mg (Ons Ok
i=1 j=1

Here, we need to determine what control data samples to use, and what observables.
Observables

— Energy ?

— Vertex ?

— Aggregated features like this used in this recent [1] JUNO publication ?

— Lower level ?

Data control samples “?

— A lot of calibration data will be available : but need to be sure they are representative enough
of the physics data we need.

— Physics runs data : enriched background samples (Ex : cosmogenics after-muon events, ...)

[1] Ex: "Energy reconstruction for large liquid scintillator detectors with ML techniques: aggregated features approach”,
Gavrikov et al, Eur.Phys.J.C 82 (2022) 1021. 56



A few examples we looked at and/or that have been mention within JUNO

X Domain adaptation [1, 2] : Tools trained to produce discriminative features that are the same in source
and target domains.

X GANSs

X Methods providing the regressed quantity + an uncertainty.

Not convinced such methods would indicate directly the scenarios at detector level, that
still can change the oscillation analysis, even when all control data is used to train them.

X Pivot method [3] : an Adv NN to eliminate the dependence of an algorithm on nuisance parameters.

The adaptation to > 35k nuisance parameters is not obvious.

X Also see https://iml-wg.github.io/HEPML-LivingReview
o Esp. sections on : Decorrelation methods, Generative models and density estimation, uncertainty
qguantification, etc.

[1] « Learning to Pivot with Adversarial Networks », Gilles Louppe(NY U.), Michael Kagan, Kyle Cranmer(NY U.),
arXiv:1611.01046

[2] « Unsupervised Domain Adaptation by Backpropagation», Y. Ganin and V. Lempitsky, Proceedings of the 32nd
International Conference on Machine Learning, https://proceedings.mlir.press/v37/ganin15.pdf

[3] « Adversarial Discriminative Domain Adaptation », E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, arXiv:1702.05464 57


https://proceedings.mlr.press/v37/ganin15.pdf
https://iml-wg.github.io/HEPML-LivingReview
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www  Cherenkov photon

[=]D,

Liquid Scintillator
Sphere

Inputs to reco algorithms
- Charge Qi « #Photons that hit PMT;

- ti « Estimated time of 1st hit in PMT;
- Other Waveform parameters....



