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Landau-Lifshitz-Gilbert equation with nutation

et o inertial Landau-Lifshitz-Gilbert equation (iLLG) =

learning about

S magnetization dynamics with precession, dampening and

magnets

nutation

M =M x (w+AM + 7 M) (1)
M — M/||M|| reduced magnetization,
w = yuoHefr: precession field given by magnetic induction pgH e,
A: dimensionless Gilbert “dampening” constant
7: relaxation time for magnetic inertia
Recast in a dimensionless form t — t/7 and = Tw:

a b
Heﬂ HeH

M=M x (Q+ M + M)



Symplectic integration

e Let J be defined as J = M — M x M; iLLG written in canonical form:

dynamics of

magnets M _ M % J ) M(O) _ MO
{ J=MxQ+rxM—1) g0 =g (2)

o J is misaligned with M and only aligned when M//M

@ M is in precession around J; J is a torque M x € along with a
"damping” A(M — J)
0 0<t< ¢t




Symplectic integration Il
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e Equation on M describes precession of M around J and can be
solved over an interval At (assuming J constant), according to
Rodrigue’s rotation formula:

J(t) J(t)
14(2)l 14(2)ll
with o + 2a8M(t) - J(t) + B2 + (1 — (M(t) - J(t))?) = 1.

@ Since J is not constant, the corrections can be expressed by a
4th-order Runge-Kutta scheme

M(t + At) = a(At)M(t) + B(At)

+ y(At)M(t) x

J(t + At) = RK4[J(t), M(t)]



Neural Network integration
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Rt o Compact notation A = (7) defines a 1%*-order ODE:

A = F(A)
{A(O) = Ao G)

A(t,P) = Ay + tN(t, P) (4)

P: set of learning parameters
N (t, P): output of a neural network

@ Trial solution

o [2-|oss function discretized in time, t, = trk/N, to be
minimized over P

loss[P] = Z ||A tx, P) — F(A(tx, P ))H2 (5)



Neural Network Architecture
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Magnetization

1
h

A(t, P)

\

(/8 ifhf) 1

(¢, P) = o(tw® + b1
h(k+1)(t7 P) _ 0_( W(k+1)h(k) + b(k+1)) (6)
N‘(t, P) — W(L+1)h(L) 4 b(L+1)

o Implemented with Tensorflow



Results
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e o N=32,0<t<tr=2
o Physical parameters: € =27z, A =0.3

Initial conditions: My = x, Jo = (1, \/%, \/%)T

Neural network: First layer of 64 neurons, second layer of 32
neurons, sigmoid activation functions

Optimization: Adam algorithm, 50000 iterations (2 minutes)
Final loss: 1.0.10~*
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Direct iLLG Neural Network integration
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magnets Direct formulation without any canonical transformation:

M =M x (2+ M + M)

M(0) = M, (7)
M(0) = V,
Trial solution:
M(t, P) = My + tV, + t°N (¢, P) (8)

Loss function:

N
loss[P] = 3 [N~ M x (@ AW + W) (8, P)  (9)
k=1



Results
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N o N=32,0<t<t =2
Physical parameters: 2 =27z, A = 0.3

Initial conditions: Mo = x, Vo = (0, /3, /)7

Neural network: First layer of 64 neurons, second layer of 32
neurons, sigmoid activation functions

Optimization: Adam algorithm, 50000 iterations (2 minutes)
Final loss: 3.0.10~*
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(a) Components of M (b) Components of M (c) Components of J for
for the PINN solution for the PINN solution the PINN solution



PINNs versus symplectic method
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Pros
@ Few samples points in the training set are sufficient
@ No canonical form of ODE is needed

Cons

o Tracking the error through backpropagation is harder (depends
on network architecture)

@ Describing the symmetries by the neural network is not as
obvious as through the ODEs

@ Computation is for the moment more time consuming
The cons represent conceptual challenges
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Solution of the LLG equation
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magnets @ When A =0 and 7 = 0; precession in a constant field: exact
solution Vt is given by Rodrigue’s rotation formula

@ When A # 0 and 7 = 0; dampened motion in a constant field:
exact solution is also known (a.k.a Magnus expansion) and here
depicted

(a) Solution for A =0
and 7=0 (b) Solution for 7 =0



Enforcing symmetries: conservation of the
magnetization
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@ Symmetries of the system can be enforced by adding a constraint
term in the loss function, along with a Lagrange multiplier p.

@ In the case of the conservation of the norm of the magnetization
(M| =1):

N

loss(P Z(HA tk, P) — F(Ao + tiN (ti, P )H
=1 (10)

(M2~ 1)2)(tk, P)



Experiments with the Lagrange multiplier

PINNs for Integrating equation (2) with a constraint term in the loss:
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s @ Neural network: L hidden layers of H neurons, sigmoid
activation functions

@ Optimization: Adam algorithm, 50000 iterations
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Experiments with the number of sample points
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Figure: Experiments with the number of sample points



Rodrigue's formula

M(6) = a()M0) + A(0) e+
then x = M(0) - |3”

a(t) = cos(]|€2(|t)
B(t) = x(1 — cos([|£2]t)) (13)
() = sin([[€2|¢)

~



