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Landau-Lifshitz-Gilbert equation with nutation

inertial Landau-Lifshitz-Gilbert equation (iLLG) =
magnetization dynamics with precession, dampening and
nutation

Ṁ = M ×
(
ω + λṀ + τM̈

)
(1)

M →M/‖M‖ reduced magnetization,
ω ≡ γµ0Heff : precession field given by magnetic induction µ0Heff ,
λ: dimensionless Gilbert “dampening” constant
τ : relaxation time for magnetic inertia
Recast in a dimensionless form t → t/τ and Ω = τω:

Ṁ = M ×
(
Ω + λṀ + M̈

)
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Symplectic integration

Let J be defined as J ≡M−M× Ṁ; iLLG written in canonical form:{
Ṁ = M × J
J̇ = M ×Ω + λ(M − J) with M(0) = M0

J(0) = J0
(2)

J is misaligned with M and only aligned when M//Ṁ
M is in precession around J; J̇ is a torque M ×Ω along with a
”damping” λ(M − J)
0 ≤ t ≤ tf
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Symplectic integration II

Equation on Ṁ describes precession of M around J and can be
solved over an interval ∆t (assuming J constant), according to
Rodrigue’s rotation formula:

M(t + ∆t) = α(∆t)M(t) + β(∆t) J(t)
‖J(t)‖ + γ(∆t)M(t)× J(t)

‖J(t)‖

with α2 + 2αβM(t) · J(t) + β2 + γ2(1− (M(t) · J(t))2) = 1.
Since J is not constant, the corrections can be expressed by a
4th-order Runge-Kutta scheme

J(t + ∆t) = RK4[J(t),M(t)]
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Neural Network integration

Compact notation A ≡
(

M
J

)
defines a 1st -order ODE:

{
Ȧ = F (A)

A(0) = A0
(3)

Trial solution
A(t,P) = A0 + tN (t,P) (4)

P: set of learning parameters
N (t,P): output of a neural network
L2-loss function discretized in time, tk = tf k/N, to be
minimized over P

loss[P] = 1
N

N∑
k=1

∥∥Ȧ(tk ,P)− F (A(tk ,P))
∥∥2 (5)
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Neural Network Architecture
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Magnetization

h(1)(t,P) = σ(tW (1) + b(1))
h(k+1)(t,P) = σ(W (k+1)h(k) + b(k+1))

N (t,P) = W (L+1)h(L) + b(L+1)

(6)

Implemented with Tensorflow
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Results

Parameters:
N = 32, 0 ≤ t ≤ tf = 2
Physical parameters: Ω = 2πz, λ = 0.3
Initial conditions: M0 = x, J0 = (1,

√
1
6 ,
√

1
6 )T

Neural network: First layer of 64 neurons, second layer of 32
neurons, sigmoid activation functions
Optimization: Adam algorithm, 50000 iterations (2 minutes)
Final loss: 1.0.10−4
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Direct iLLG Neural Network integration

Direct formulation without any canonical transformation:
Ṁ = M ×

(
Ω + λṀ + M̈

)
M(0) = M0

Ṁ(0) = V 0

(7)

Trial solution:

M(t,P) = M0 + tV 0 + t2N (t,P) (8)

Loss function:

loss[P] = 1
N

N∑
k=1

∥∥Ṁ −M ×
(
Ω + λṀ + M̈

)∥∥2 (tk ,P) (9)
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Results

Parameters:
N = 32, 0 ≤ t ≤ tf = 2
Physical parameters: Ω = 2πz, λ = 0.3

Initial conditions: M0 = x, V 0 = (0,−
√

1
6 ,
√

1
6 )T

Neural network: First layer of 64 neurons, second layer of 32
neurons, sigmoid activation functions
Optimization: Adam algorithm, 50000 iterations (2 minutes)
Final loss: 3.0.10−4

(a) Components of M
for the PINN solution

(b) Components of Ṁ
for the PINN solution

(c) Components of J for
the PINN solution
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PINNs versus symplectic method

Pros
Few samples points in the training set are sufficient
No canonical form of ODE is needed

Cons
Tracking the error through backpropagation is harder (depends
on network architecture)
Describing the symmetries by the neural network is not as
obvious as through the ODEs
Computation is for the moment more time consuming

The cons represent conceptual challenges
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Thank you

Thank you



PINNs for
learning about

dynamics of
magnets

M.Carreau1,
S.Nicolis2,

B.Souaille2 and
P.Thibaudeau3

Backup slides

Backup slides
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Solution of the LLG equation

When λ = 0 and τ = 0; precession in a constant field: exact
solution ∀t is given by Rodrigue’s rotation formula
When λ 6= 0 and τ = 0; dampened motion in a constant field:
exact solution is also known (a.k.a Magnus expansion) and here
depicted

(a) Solution for λ = 0
and τ = 0 (b) Solution for τ = 0
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Enforcing symmetries: conservation of the
magnetization

Symmetries of the system can be enforced by adding a constraint
term in the loss function, along with a Lagrange multiplier µ.
In the case of the conservation of the norm of the magnetization
(‖M‖2 = 1):

loss(P, µ) = 1
N

N∑
k=1

(∥∥Ȧ(tk ,P)− F (A0 + tkN (tk ,P))
∥∥2

+µ(‖M‖2 − 1)2
)

(tk ,P)

(10)
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Experiments with the Lagrange multiplier

Integrating equation (2) with a constraint term in the loss:
Neural network: L hidden layers of H neurons, sigmoid
activation functions
Optimization: Adam algorithm, 50000 iterations

(a) Evolution of the loss with a
smaller network

(b) Evolution of the loss with a
deeper network
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Experiments with the number of sample points

Figure: Experiments with the number of sample points



PINNs for
learning about

dynamics of
magnets

M.Carreau1,
S.Nicolis2,

B.Souaille2 and
P.Thibaudeau3

Rodrigue’s formula

when

dM(t)
dt = M(t)×Ω (11)

If ∀t

M(t) = α(t)M(0) + β(t) Ω
‖Ω‖ + γ(t)M(0)× Ω

‖Ω‖ (12)

then χ ≡M(0) · Ω
‖Ω‖ and

α(t) = cos(‖Ω‖t)
β(t) = χ(1− cos(‖Ω‖t))
γ(t) = sin(‖Ω‖t)

(13)


