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Introduction
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CMS experiment

Discovery of the Higgs boson in 2012 
(along with ATLAS). 

Physics scope: probe standard 
model and search for physics 
beyond standard model.

Uses proton-proton collisions at the 
center of mass energy from 7 TeV to 
13.6 TeV. 



Electromagnetic CALorimeter

Homogeneous calorimeter.

Around 76 000 PbWO4 crystals.

Mainly used for the reconstruction 
of electrons and photons.

Plays crucial role for all physics 
analysis, e.g. for Higgs decay 
channels: 

𝐻 → 𝛾𝛾

𝐻 → 𝑍𝑍* → 4ℓ



EM object reconstruction in ECAL
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PFRechits

PFClusters

SuperClusters

● Energy deposits left by particles in the PbWO4 
crystals of the calorimeter.

● PFRechits are gathered together to form a 
PFCluster that represents a single particle. 

● The subject of this talk!

● Because of bremsstrahlung or photon conversion before the ECAL, 
PFClusters have to be combined to form a SuperCluster. 

● Currently a geometrical algorithm (Mustache) is used, a Boosted 
Decision Tree is applied for energy correction. 

● New ML-based DeepSC algorithm was developed and is currently 
tested in CMSSW. 



PFCluster reconstruction

Reconstruct position and energy of electrons and photons from electromagnetic showers.

PFClustering algorithm:

BDT correction

Reconstructed energy deposits left by 
particle in crystals

clustering

hits

Identify local maximum (seed)

Aggregate crystals around seed - grow 
a cluster 

Separate overlapping clusters using 
Gaussian mixture algorithm 

Correct the predicted energy using 
Boosted Decision Tree

seed

seed

separated 
clusters
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Motivation

Creating a novel ML-based algorithm for ECAL PFClustering reconstruction.

Source: science 2.0

Main objectives:

➔ Improving energy and coordinates resolution.
➔ Improving photon vs. neutral pion discrimination:

Photons coming from neutral pion decay create two 
overlapping clusters in the calorimeter, which is difficult 
to discriminate from a single photon’s signature.
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https://www.science20.com/tommaso_dorigo/photons_and_neutral_pions-255827


Simulation
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Detector simulation
Simplified calorimeter simulated in 
Geant4 to test the performance of the 
algorithms.

Same crystal characteristics as in real 
ECAL (but not tilted), no magnetic 
field or material in front of the 
calorimeter.

The crystals of the calorimeter detect 
the deposited energy and an energy 
smearing is applied to emulate the 
readout of the real detector. 

The simulation is compatible with the 
test beam results. 

112.2 cm (51 x 2.2 cm) 
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51 x 51 x 1 crystals 

Size: 2.2 x 2.2 x 23 cm 

Material: PbWO4

Energy smearing is done using Gaussian with 𝞵 = energy deposit in 
a crystal and σ  taken from ECAL resolution formula. 

The parameters correspond to Run3 performance (a = 0.03 GeV1/2, σ = 167 MeV, c = 0.0035).



Dataset creation
Photons with [1, 100] GeV energy (flat distribution) are used, directed perpendicularly to the calorimeter.

Data samples

One particle Two particles

The dataset with two 
particles is created by 
superimposing 
one-particle events 
forcing the distance 
between two clusters 
to be < 3 crystals. 
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Training: 600K
Validation: 200K
Test: 100K

Training: 300K
Validation: 100K
Test: 50K

The model training is done using the mix of both data samples. 

Traditional PFClustering algorithm is applied on the simulated samples, including a BDT energy regression. 



Networks
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One-shot network

Energy deposits in crystals can be represented as pixel intensities of 
an image → allows to use Convolutional Neural Network (CNN).

First attempt: 
➔ CNN applied on full simulated detector (dim: 51 x 51 crystals).
➔ Predict the position (x, y) of particles in the sample.
➔ Trained with the sample containing up to 6 particles per 

detector. 
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Results:

➔ One-shot network is not able to predict precisely number of 
particles and their position simultaneously, because of data 
sparsity and output ordering ambiguity.   

➔ Not scalable to the complete ECAL detector (360 x 170 crystals in 
ECAL EB).

     - truth
     - prediction



Two-step net – CNN: architecture

To solve these issues: separate the task into two CNN networks (with similar architecture).

Input 7 x 7 windows centered on all the 
crystals with > 0.5 GeV deposit.

1st network: 
seed finder

2nd network: 
center finder

For each window predicts a 
probability to be a seed (or a real 

cluster).

Predicts precise position and energy 
for every seed that passed the 

threshold.

Only windows 
that pass a 
predefined cut

Improved resolution both for position and energy reconstruction. This approach is also scalable. 13



Two-step net – CNN: results

Signal efficiency – number of matched predicted clusters divided by the number of generated particles. 
Splitting yield – number of events where one particle was reconstructed as two clusters.
Background yield – number of clusters reconstructed > 1.5 crystal away from true particle position.

By construction, pfclustering considers 
every crystal with > 0.5 GeV deposit as 
seed.

One-particle sample

14Splitting is created by what we call a “double-counting” problem - explained further. 

Each predicted cluster is matched to a true particle with the closest energy and position.

Results shown for 
100K testing set



Two-step net – CNN: results
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Two-particle sample

Efficiency for two-particle case is much better for the network compared to pfclustering, the 
performance is improving! 

But same splitting problem as for one particle dataset.

Results shown for 
50K testing set



“Double-counting” problem

Input windows do not communicate in the network  → problem appears when a 
single-particle position is close to the crystal border: 

A single particle creates two clusters with almost identical 
predicted positions and energies.

Creates a large energy overestimation.
16The solution is to use Graph Neural Network (GNN).



Two-step net – GNN: architecture

Solution: add communication between input windows. 

Using Graph Neural Networks (GNN) and Message-Passing (MP) each window can 
learn about its neighbors.

Center-finder predictions are precise coordinates, energy and corrected probability to 
be a real cluster after adding MP. 17



Two-step net – GNN: results

With MP overestimation of energy is 
removed – “double-counting” solved.

Event example where network 
correctly identifies two clusters while 
pfclustering predicts only one. 18



Two-step net – GNN: optimization
Choosing weight of the loss for the seed probability prediction (k).

19⇒ Need to find a “sweet spot” where all loss terms converge.

k = 0.05

k = 0.1



Network optimization
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+ Hyperparameter tuning is also performed (with the Keras Bayesian optimization). 

All the results shown for the epoch with 
the smallest loss on the validation 
dataset. 

The performance differs marginally for 
different weights.

-> 0.05 chosen (epoch 300) for the best 
energy resolution performance.  



Two-step net – GNN: results for photon

Performance for the final optimized network on 1 and 2 particle samples.

Improvement in resolution (for 1 particle): 
● Coordinate: 0.04 vs. 0.08 ECAL crystals 
● Energy: 1.10 vs. 1.22 GeV

21

One-particle dataset Two-particle dataset



Two-step net – GNN: results for one-photon dataset

● Reaching same efficiency as pfclustering starting 
from 3 GeV. 

● Splitting significantly reduced with GNN.

● Much lower background compared to 
pfclustering.



Two-step net – GNN: results for two-photon dataset
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● Network can identify much better two close-by 
particles than pfclustering. 

● Splitting significantly reduced with GNN.

● Much lower background compared to 
pfclustering.



Two-step net – GNN: results for electron

Electron sample with E = [1, 100] GeV (flat distribution) each event has up to six 
particles. No separate training done - only evaluation.
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● Network shows high performance even though the samples were not part of the training (electrons and > 2 particles).

● Improved position resolution and efficiency! 

● Similar energy resolution between pfclustering and the network.



Two-step net – GNN: results for pion

Pion sample with E = [1, 100] GeV (flat distribution). Only evaluation. 

Two most energetic photons are chosen in the prediction to evaluate pion mass.

25

> 2 times more pions reconstructed with network

Better mass resolution is achieved



Summary and outlook

● A new ML-based ECAL-clustering reconstruction is presented with a simplified calorimeter 
simulation. 

● Three different networks are developed, the GNN-based algorithm outperforms pfclustering in 
most aspects (tested on both photons and electrons). 

● Significantly better reconstruction of two close-by photons (which is one of the main goals of 
the study).

○ Enables pion reconstruction.

○ Should significantly improve photon/pion discrimination. 

Outlook: 

● Publication of a paper on the results is ongoing.

● Training on actual ECAL simulation is necessary before implementation in CMSSW.

● Implementation in CMSSW and performance estimation.  

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800945 — NUMERICS — H2020-MSCA-COFUND-2017 26



Backup
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Pions linked to truth 
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Energy deposit profile
- To validate the calorimeter simulation the energy deposit profile was plotted. 
- Using the data from 1 000 electrons, all at 100 GeV shooting at the crystal center of the 

middle crystal.

Energy deposits from the simplified detector. Energy deposits from Geant4 simulation of ECAL.
http://geant4.in2p3.fr/2005/Workshop/UserSession/P.Mine.pdf

The results are very similar => the simulation can be used as a proxy for CMS ECAL. 29



ECAL resolution
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One-shot network architecture

Hyperparameters: 
learning rate = 0.001
batch size = 64
epochs ~ 500 

Loss function: Mean Absolute Error 31



Double-step network architecture

Hyperparameters: 
learning rate = 0.0001
batch size = 64
epochs ~ 500 

Loss function: Binary Crossentropy (for seed finder) or Mean Absolute Error (for position-energy 
estimator). 32



Graph Neural Networks
➢ Type of neural network that can operate on and analyze graph structures.

➢ Unlike other types of networks GNN can be easily applied on sparse data, doesn’t require padding.

➢ A graph consists of nodes (contain features of the object) and edges (reflect the relationship between the 
nodes).

➢ In GNNs the information can be shared between the neighbors: 

○ The vector features of each node are transformed into “messages” (e.g. using dense layers) that are sent 
to the neighbors (message-passing).

○ In this way, each node learns information about its neighbors and itself. The process is carried out in 
parallel and repeated several times.

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html

nodes

edges 
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https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html


ECAL resolution parameters

Noise term:
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Constant term:



Matching conditions
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