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Introduction



CMS experiment

Discovery of the Higgs boson in 2012
(along with ATLAS) 3.8T Solenoid

ECAL
1 ‘ j—m J\\\ ' IRON YOKE
R‘\
Physics scope: probe standard £ ,\ “.,,ﬂ.‘\,~ A st
model and search for physics = ,\‘ ,/// A~ Y| (CSC+RPC)
beyond standard model ~!|\|‘;‘ ¥/
L A

Uses proton-proton collisions at the
center of mass energy from 7 TeV to
13.6 TeV.
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Electromagnetic CALorimeter

Homogeneous calorimeter.

Key:

Around 76 000 PbWO, crystals. ——— Muon

Electron
Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)

Mainly used for the reconstruction  ----- Photon
of electrons and photons.

Plays crucial role for all physics (
analysis, e.g. for Higgs decay

ChanneIS: Tracker

n Electromagnetic
| Calorimeter
H— py I

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

H —_ Zz —_ 4-? Transverse slice with Muon chambers

through CMS



EM object reconstruction in ECAL

PFRechits

SuperClusters

Energy deposits left by particles in the PbW04
crystals of the calorimeter. E,

PFRechits are gathered together to form a
PFCluster that represents a single particle.

The subject of this talk!

s

Because of bremsstrahlung or photon conversion before the ECAL,
PFClusters have to be combined to form a SuperCluster.

Currently a geometrical algorithm (Mustache) is used, a Boosted
Decision Tree is applied for energy correction.

New ML-based DeepSC algorithm was developed and is currently
tested in CMSSW.



PFCluster reconstruction

Reconstruct position and energy of electrons and photons from electromagnetic showers.

PFClustering algorithm:

BDT correction

A
4 A

Reconstructed energy deposits left by
particle in crystals

Identify local maximum (seed)

Aggregate crystals around seed - grow
a cluster

Separate overlapping clusters using
Gaussian mixture algorithm

Correct the predicted energy using
Boosted Decision Tree

separated

Jclusters

- 10!

10°

E [GeV]



Motivation

Creating a novel for ECAL PFClustering reconstruction.

Main objectives:

= Improving and :
=> Improving discrimination:

Photons coming from neutral pion decay create two
overlapping clusters in the calorimeter, which is difficult
to discriminate from a single photon'’s signature.

/N[ [ [ ]

=

Source: science 2.0


https://www.science20.com/tommaso_dorigo/photons_and_neutral_pions-255827




Detector simulation

simulated in 51 x 51 x 1 crystals

Geant4 to test the performance of the | .55, 25x23cm

algorlthms. Material: PbWO4 g
N

Same crystal characteristics as in real >

ECAL (but not tilted), no magnetic 5

field or material in front of the Y: green £

calorimeter. N

The crystals of the calorimeter detect
the deposited energy and an

is applied to emulate the
readout of the real detector.

The simulation is compatible with the
test beam results.

Energy smearing is done using Gaussian with u = energy deposit in (g
a crystal and o taken from ECAL resolution formula. E

The parameters correspond to Run3 performance (a = 0.03 GeV'?, 6 = 167 MeV, ¢ = 0.0035). 9



Dataset creation

Photons with [1, 100] GeV energy (flat distribution) are used, directed perpendicularly to the calorimeter.

Training: 600K Training: 300K
Validation: 200K Data samples Validation: 100K
Test: T00K 7 AN Test: 50K

/7
/ \\

* true center position o- % true center position

The dataset with two
particles is created by
superimposing
one-particle events
forcing the distance
between two clusters
to be < 3 crystals.

The model training is done using the mix of both data samples.

Traditional PFClustering algorithm is applied on the simulated samples, including a BDT energy regression. 10



Networks
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One-shot network

Energy deposits in crystals can be represented as
— allows to use (CNN).

First attempt:

-> CNN applied on (dim: 51 x 51 crystals).

-  Predict the of particles in the sample. ®

->  Trained with the sample containing per 10
detector.

Coordinate resolution
12000
—— one-shot net

—— pfclustering

10000 Results:
8000 - One-shot network is number of
£ oo particles and their position , because of data

sparsity and output ordering ambiguity.

4000

- Not scalable to the complete ECAL detector (360 x 170 crystals in
ECAL EB).

2000

0

-0.4 -0.2 0.0 0.2 0.4
dx



Two-step net — CNN: architecture

To solve these issues: separate the task into two CNN networks (with similar architecture).

Coordinate resolution
7 X 7 windows centered on all the doubl
crystals with > 0.5 GeV deposit. 12000 ~— double-step net

—— one-shot net

—— pfclustering
l 10000
1st network: For each window predicts a 8000
' probability to be a seed (or a real =
seed finder cluster). 2 a0
Only windows
that pass a 4000
predefined cut
2000
2nd network: Predicts precise position and energy
) for every seed that passed the 0
center finder threshold. 02 -01 00 0.1 0.2

dx

Improved resolution both for position and energy reconstruction. This approach is also scalable. 13



Ratio

Two-step net — CNN: results

Each predicted cluster is matched to a true particle with the closest energy and position.

— number of matched predicted clusters divided by the number of generated particles.
— number of events where one particle was reconstructed as two clusters.
— number of clusters reconstructed > 1.5 crystal away from true particle position.

Results shown for

One-particle sample 100K testing set

Signal Splitting
1.0 ] ®  § ® ® ® ® ® ® ¢ pfclustering
300 ¢ two steps net +
0.9 ¢ 250 +
By construction, pfclustering considers
os every crystal with > 0.5 GeV deposit as o
R c
=
seed. 8 150 ' ¢
0.7 100 +
L
50 ¢
0.6 + ¢ pfclustering
¢ two steps net o8 ] ° ° ° ° ° ° °
1-1.5  15-2 2-3 3-5 5-10 10-20 20-40 40-80 80-100 1-15  15-2 2-3 3-5 5-10  10-20 20-40 40-80 80-100
Etrue [GeV] Etrue [GeV]

Splitting is created by what we call a “double-counting” problem - explained further. 14



Two-step net — CNN: results

Two-particle sample

Signal Splitting
1.0 ¢ pfclustering ° ] ® ¢ pfclustering
® [ ]
¢ two steps net °® ¢ two steps net
500
0.9 .
! '
0.8 400
'
¢ o ¢
.% 0.7 ° % 300
o o}
°
L 200 +
+ L]
0.5 ¢
¢ 100
0.4 + ° ®
+ 0 ] ] ° ° ° ° °
1-15 15-2 2-3 3-5 5-10 10-20 20-40 40 - 80 80 - 100 1-15 15-2 2-3 3-5 5-10 10-20 20-40
Etrue [GeV] Etrue [GeV]
for two-particle case is compared to pfclustering, the

performance is improving!

But same splitting problem as for one particle dataset.

40 - 80

Results shown for
50K testing set

80 - 100
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“Double-counting” problem

Input windows do not communicate in the network — problem appears when a
single-particle position is close to the crystal border: Energy sum

5
10 —— pfclustering

—— two steps net

Probability to be seed: 0.952

Probability to be seed: 0.996

35 104

).
. .
6 4
=] ]
® ® 103
) ..

-
C

3

15 15 102
(0.4 4 0.8 I 0.5 Jf 0.9) .

5 1 5 10!

0
10°

A single particle creates two clusters with almost identical 0009 LOZE B
pred/ Etrue \

predicted positions and energies. \
Creates a large energy overestimation.
The solution is to : 16



Two-step net — GNN: architecture

Solution: add communication between input windows.

Using Graph Neural Networks (GNN) and Message-Passing (MP) each window can

learn about its neighbors.

Seed finder
I
. -?: &A‘# . Initial input
: M . 7x7 window seed
J‘g- ;’ké‘“q “—» | Goscey) finder
'51‘” ¥ One by one
‘_ No connection

between clusters
Dataset simulated

J

with Geant4

Take only windows that
pass threshold (0.3)

_

Input to
center finder

=

input - all the clusters
that passed threshold
from one event (window)

|

B

Center finder

ﬂaply CNN independently on

each input window

Message passing
(learning about the
neighbors)

Dense layers

(applied separately) \

— —

(x, ), en, p

G ==
-

(x, ), en.pj

Vector of latent

Final output
features

Double pass for dr < 0.3

Center-finder predictions are precise coordinates, energy and corrected probability to
be a real cluster after adding MP.



Two-step net — GNN: results

Energy sum
5
10 —— two steps net (CNN)
—— two steps net (GNN)
104
103
=
e
=
S
107
10!
10°

|
0.0 0.5 1.0 1.5 2.0 2.5 3.0

zEpred/Etrue

With MP overestimation of energy is
removed - “double-counting” solved.

® network
® CMS algorithm
X truth

44 1

10 12 14 16 18 20 22
X

Event example where network
correctly identifies two clusters while
pfclustering predicts only one.

E [GeV]

1071
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Two-step net — GNN: optimization

of the loss for the

Choosing

loss = |Xprcd o Xtrucl 3 ’Eprcd - Etruc| +K- CI’OSSEﬂtFOpY(pper, ptruc)

k=0.05

= Need to find a “sweet spot” where all loss terms converge.

0.060

prediction (k).

0.0557

0.0507 :

0.045

0.040

0.035

0.060

0.0551

0.050

0.045

0.040

0.035

Position loss Energy loss Seed loss
e loss 0.030 e loss 0.006 e loss
val_loss val_loss val_loss
0.005
0.025
[ ; 0.0041
- 0.0201 : 3
1 : i
{ i 0.0031 %
. 0.0151 *
| |0.002
' Jo.o10 i
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
e loss e loss e loss
val_loss 0.030 val_loss [0.005 val_loss
0.025
] 0.0041
: 0.0201 : \
; 0.003
i :
\ 0.015{ %
0.002
: ~|o.010 | -
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
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Network optimization

0.0423 0.0422 0.0543

S Zoboo1  2ocon =aco =000l = 0000n All the results shown for the epoch with
the smallest loss on the validation
dataset.

Ok

0.9845 0.9835 0.9946 0.9947 0.9947
+ 0.0004 + 0.0004 + 0.0002 + 0.0002 + 0.0002

signal

& 17 19 18
=3 +4 +4 *4

->0.05 chosen (epoch 300) for the best
ne  ms e energy resolution performance.

Probability weight

+ Hyperparameter tuning is also performed (with the Keras Bayesian optimization).

20



Two-step net — GNN: results for photon

Performance for the final optimized network on 1 and 2 particle samples.

One-particle dataset Two-particle dataset

Position resolution Energy resolution Position resolution Energy resolution

5000
12000 — pfo=0.08 — pfo=122 8000 — pfo=0.17 — pfo=12.48
—— net 0=0.04 7000 —— net 0=1.10 —— net 0=0.06 —— neto=1.84
7000 4000
10000 6000
6000
8000 5000 5000 3000
o o o
S 4000 5 S
6000 S § 4000 3
2000
3000 3000
4000
2000 2000
1000
2000
1000 1000
0 0 L= - 0 0
-0:2 -0.1 0.0 0.1 0.2 -4 -2 0 2 4 -0.2 -0.1 0.0 0.1 0.2
Xpred - Xtrue [Crystals] Epred - Etrue [GEV] Xpred - Xtrue [Crystals] Epred - Etrue [GeV]

Improvement in resolution (for 1 particle):
e Coordinate: 0.04 vs. 0.08 ECAL crystals
e Energy: 1.10 vs. 1.22 GeV

21




Two-step net — GNN: results for one-photon dataset

Ratio

1.0

0.9

0.8

0.7

0.6

Signal

¢
¢
¢

-1.5 15-2 2-3 3-5

5-10
Etrue [GeV]

10-20

20-40

pfclustering
two steps net (CNN)
two steps net (GNN)

40 - 80 80 - 100

Reaching same efficiency as pfclustering starting

from 3 GeV.

Splitting significantly reduced with GNN.

Much lower background compared to

pfclustering.

300

250

200

Count

100

50

10°

104

Count

102

10!

10°

Splitting
& pfclustering
¢ two steps net (CNN)
¢ two steps net (GNN)
L]
(]
] ] ° ° ° °
1-15 15-2 2-3 3-5 5-10 10-20

Etrue [GeV]

Background
°
o

05-1 1-15 1.5-2 2-3 3-5 5-10
Eseed [GeV]

20 - 40 40-80 80-100

¢ pfclustering
¢ two steps net (CNN)
¢ two steps net (GNN)

10-20 20 - 40 40 - 60



Two-step net — GNN: results for two-photon dataset

1.0

Signal
¢ pfclusterin (]
p 9 . s 8 b
® two steps net (CNN) s
¢ two steps net (GNN) :
° °
*
# [ ]
[ ]
[}
: *
¢
-1.5 1.5-2 2-3 3-5 5-10 10-20 20-40 40 -80 80 -100
Etrue [GEV]

Network can identify much better two close-by
particles than pfclustering.

Splitting significantly reduced with GNN.

Much lower background compared to
pfclustering.

Count

Count

500

400

300

200

100

10°

104

103

102

10t

10°

Splitting
¢ pfclustering +
¢ two steps net (CNN)
¢ two steps net (GNN)
¢
¢
]
(]
®
° . °
° ] ° . ° ° ° °
1-15 1.5-2 2-3 3-5 5-10 10-20 20-40 40 - 80 80 - 100
Etrue [GEV]
Background
L4 & pfclustering
¢ two steps net (CNN)
¢ two steps net (GNN)
[]
°
05-1 1-15 1.5-2 2-3 3-5 5-10 10-20 20 -40 40 - 60 23

Eseed [GeV]



Two-step net — GNN: results for electron

Electron sample with E = [1, 100] GeV (flat distribution) each event has up to six
particles. No separate training done - only evaluation.

Position resolution Energy resolution

Signal
12000 —— pfclustering —— pfclustering 1.0 . ® ®
—— two steps net 7000 —— two steps net ° : ® z $ L
10000 6000 0.9 ¢
¢
5000
8000 0.8
=
S 4000 e
<] ©
6000 o o7
3000
4000
2000 0.6
2000 1000 05 ¢ pfclustering
' + ¢ two steps net
0 0 ) 1-15 15-2 2-3 3-5 5-10 10-20 20-40 40 - 80 80 - 100
-0.2 -0.1 0.0 0.1 0.2 -4 =2 0 2 4 T =T B B E -[G v ° ° . i
e
Xpred = Xtrue [crystals] Epred - Etrue [GEV] true

e Network shows high performance even though the samples were not part of the training (electrons and > 2 particles).

e Improved position resolution and efficiency!

e Similar energy resolution between pfclustering and the network.
24



Two-step net — GNN: results for pion

Pion sample with E = [1, 100] GeV (flat distribution). Only evaluation.

Two most energetic photons are chosen in the prediction to evaluate pion mass.

mo pt = [0, 15] GeV

—— pfclustering
—— two steps net

0 50
Mg, [MeV]

100 150 200 250 300

Mo pr = [15, 30] GeV

M pr = [30, 60] GeV

—— pfclustering 80 —— pfclustering
—— two steps net —— two steps net
250 70
60
200
50
- -
5 5
150
S § 40
100 30
20
50
10
0 — S 0 nefl an Ny
0 50 100 150 200 250 300 0 50 100 150 200 250 300

My, [MeV] My, [MeV]

Count

> 2 times more pions reconstructed with network

Better mass resolution is achieved

5

o p: = [60, 100] GeV

—— pfclustering
—— two steps net

I

100 150 200 250 300
Mg, [MeV]
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Summary and outlook

e A new ML-based ECAL-clustering reconstruction is presented with a simplified calorimeter
simulation.

e Three different networks are developed, the GNN-based algorithm outperforms pfclustering in
most aspects (tested on both photons and electrons).

° Srigniﬁcc?n)tly better reconstruction of two close-by photons (which is one of the main goals of
the study).

o  Enables pion reconstruction.

o  Should significantly improve photon/pion discrimination.
Outlook:
e Publication of a paper on the results is ongoing.
e Training on actual ECAL simulation is necessary before implementation in CMSSW.

e Implementation in CMSSW and performance estimation.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800945 — NUMERICS — H2020-MSCA-COFUND-2017 26
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Pions linked to truth

Mo Mass reconstruction

—— pfclustering
—— two steps net

1000

800

600

Count

400

200

0 50 100 150 200 250 300
My, [MeV]
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Energy deposit profile

- Tovalidate the calorimeter simulation the energy deposit profile was plotted.
- Using the data from 1 000 electrons, all at 100 GeV shooting at the crystal center of the
middle crystal.

E1=77.95, E3=93.65, E5=97.00

Ratio of energy in Xtals for simulation |

= 5

4
. _ 10! 10
0.974244 316927  1.18384 MONTE CARLO
q : TN, E25=975 %
) ) E9=946 %
] 1 E1=789 %
100
m
1
<
00 1 2 3 4 5
107! L

0 1 2 3 4

Energy deposits from Geant4 simulation of ECAL.

Energy deposits from the simplified detector. http://geant4.in2p3.fr/2005/Workshop/UserSession/P.Mine.pdf

The results are very similar => the simulation can be used as a proxy for CMS ECAL. 29



ECAL resolution

Where

* a - stochastic term. It incorporates both the contributions from shower fluctuations and photostatistics.
* 0, - noise. It includes electronic noise as well as the pileup.

* C - constant term, which covers the energy leakage from the back of the calorimeter, non-uniformity of the

longitudinal light collection, and fluctuations in single-channel response.

30



One-shot network architecture

Dense layers

Convolutional layers g A N
Input image A [
4 N
Output
— _— — - > —_— D
2 x n, tanh
100, relu
32x3x3,relu 64 x5 x5, relu 128 x 5 x 5, relu
32x3x3,relu 64 x 5 x 5, relu 128 x 5x 5, relu 1000, relu
51 x51x1 64 x 3 x 3, relu 128 x 5 x 5, relu + dropout 0.1 500, relu
+ dropout 0.1 + dropout 0.1 fla?en
Hyperparameters:

learning rate = 0.001
batch size = 64
epochs ~ 500
Loss function: Mean Absolute Error



Double-step network architecture

Dense layers Output
' A
Convolutional layers p N ~
Input image A —
) . [
— Seed
finder 1,

activation=sigmoid

500 Position-e |:|
(il leaky RelLU nergy
128x3x3 256 x3x3 + dropout (0.1) :
activation=leaky ReLU activation=leaky RelLU 2400 sstmator 1 * 2, S .
7x7x1 + batch normalization + batch normalization L leaky ReLU \_ activation=sigmoid, tanh
flatten + dropout (0.1)
Hyperpa rameters:

learning rate = 0.0001
batch size = 64

epochs ~ 500

Loss function: Binary Crossentropy (for seed finder) or Mean Absolute Error (for position-energy
estimator).
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Graph Neural Networks

Type of neural network that can operate on and analyze graph structures.
Unlike other types of networks GNN can be easily applied on sparse data, doesn’t require padding.

A graph consists of nodes (contain features of the object) and edges (reflect the relationship between the
nodes).

> In GNNs the information can be shared between the neighbors:

o  The vector features of each node are transformed into “messages” (e.g. using dense layers) that are sent

to the neighbors (message-passing).

o Inthis way, each node learns information about its neighbors and itself. The process is carried out in
parallel and repeated several times.

nodes

HEHH

HH -

Message passing

>

edges

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial notebooks/tutorial7Z/GNN overview.html
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https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html

ECAL resolution parameters

E; noise [GeV]

Noise term: Constant term:
B R B i B i i 3 e 0.016 CMS Preliminary Run 2 (13 TeV)
~ 0, 150/b data (end of run2) . 5 ECALIE R
o - icti o o8 @ : . — ]
10 . o, 180/fb pred|ct|on et o S 0.014r 0, 2016 : 1
~ 0, 235/ib prediction - S80012f — 02017 i [SE—
~ 0, 315/b prediction i §0.010:— ~  0,,2018 i ]
~ 0, 400/ib prediction T ™, 2 i = ]
-~ . & o | == 1
S - = 0.008} ! —— ]
B - . @© [ - —s ]

S e B o . i

***** L B B & 0.006F e ]
e T w3 g IS i i ]
10 Rinat ot > RN i g B 0.0041 ——— ]
M e = T ] = | :
B == 1 0.002}—~— : 3
S LA T R SN [ TP TN S U (A ST S CRLE (i PO DAY S | PR TRRTe :....1....1....Il....l.......‘"
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
n Il
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Matching conditions

The presented results for variables’ resolutions include only matched events for all the two-step networks and
the pfclustering algorithm.

(Ercco - Egon
0.14

s

Zreco — Leen )2 + (Yreco — 1 2,
vrnlatc:h — \/( ( reco gCrl) (JICCO JgCI]) )2 )2‘ (6‘6)

0.44
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