Perles liquides dans une matrice solide : rhéologie des émulsions solides

Elina Gilbert, Anniina Salonen, Christophe Poulard

elina.gilbert@universite-paris-saclay.fr

Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, France

1000000

less flow, more stiffness

⇒ "coupling" of G' and G" wrt physical chemistry

Elastomer-like material with separate control over G' and G"?

Inclusion systems

First approach for solid emulsions with liquid inclusions

· Elastocapillary number accounts for all liquid inclusions, and yield stress foamy liquids

Style et al., 2014, Nature Physics, 11, 2

Experimental data for monodisperse inclusion corresponds to the literature for elasticity: Influence of volume fraction Φ modulated by elasto-capillary number Ca_{El}

Controlling the rheology of a solid emulsion with liquid droplets

• PEG 600 (n=15) :

melting temperature: $\sim 18^{\circ}C$

- Sylgard 184 / Sylgard 527 mixture :
 - Sylgard 184: purely elastic $E \approx 1$ MPaSylgard 527: mainly elastic $E \approx 1$ kPa

Curing at ambient temperature for 2 days

Control parameters: Φ , **R**, G_{PDMS}^* , γ , $\eta_{droplets}$

Dispersed and continuous phases

Moduli of the dispersed phase increase above the continuous phase at colder temperature

Generation of solid emulsions by breakup under shear

12

10

40.00

γ [mN.m⁻¹]

- Rotation: aspiration ٠ between rotating rod and stator
- Shearing between wall ٠ and rotor: breaking into droplets

DBE-224

Typical linear viscoelastic response of solid emulsions

Loss modulus: 2 apparent slopes

- Low frequencies: almost flat
- High frequency: same slope as continuous phase

Evolution of linear viscoelasticity with volume fraction

Almost no change ٠ in the slopes of either moduli

In G':

- No tendency in ٠ plateau evolution at low volume fraction
- Decrease at higher ٠ volume fraction

Evolution of linear viscoelasticity with volume fraction

- Φ 0 0.3 0.65 Almost no change 10^{6} 10^{6} in the slopes of either moduli [⁷]205⊧ ज 10⁵ In G': ن¹ ئ¹ No tendency in 5 10^{4} plateau evolution at low volume fraction 10^{3L}_{10} $10^{3}_{0^{-2}}$ 10^{0} 10^{2} 10^{2} 10^{0} ω [rad.s⁻¹] ω [rad.s⁻¹] Decrease at higher
- In G":

?

- Slope at high frequency \equiv PDMS slope
- Slope is lower than 1, • close to 0.4 (usual for elastomers)
 - \rightarrow fractional rheology

SFP 2023

volume fraction

٠

Evolution of linear viscoelasticity with volume fraction

In G':

- No tendency in plateau evolution at low volume fraction
- Decrease at higher volume fraction

plateau and power-law increase increases with volume fraction

In G":

- Slope at high frequency \equiv PDMS slope
- Slope is lower than 1, close to 0.4 (usual for elastomers)

 \rightarrow fractional rheology

Elina Gilbert

R [μm]

- Viscoelastic influence of liquid droplets in a soft matrix
 Modelling work in progress with fractional rheology
- Decorrelations of storage and loss moduli with regards to volume fraction
 Influence of polydispersity on elastocapillary number
- Interesting unexplained behavior with the temperature transition
- Discrepancy with existing models already with liquid droplets

- \rightarrow Non-trivial mechanical reponse from a mix of model materials
- \rightarrow Interesting for tunable materials
- \rightarrow Encapsulation of a phase-transition dispersed phase: thermal energy storage

Thank you for your attention !

Rheology of liquid emulsions

• Viscosity for emulsions based on Newtonian liquids (Frankel & Acrivos, 1970):

Influence of the volume fraction Φ on viscosity • Rheology of liquid emulsions (Palierne, 1990):

 Ca_{el} influences the way Φ changes the rheological parameters

Rheological characterization

- 1. Sample
- 2. Plate-plate configuration
- 3. Peltier plate
- 4. Insulating box

- Frequency sweep between 0.01Hz and 100Hz
- Deformation $\epsilon = 0.1\%$
- Constant normal force 2N during temperature change

Master curve ?

Adhesion first results with JKR experiment

Preliminary JKR results

G' almost constant for $\Phi \le 0.4$, increasing with Φ above $\Phi = 0.4$ G'' increases strongly with Φ

Sylgard 184 continuous phase

- Little variation compared to the continuous phase: dominated by elasticity
- Modulus decreases as thin films are formed
- \rightarrow Same variation for G' and G"

Microfluidics-generated samples

- PDMS cooled down and pushed through a peristaltic pump, allowing for reuse on the excess oil
- PEG600 pushed through 10 syringes in the flow of PDMS
- Sedimentation of the droplets leading to $\Phi \approx rcp$ and curing at room temperature

 $R{\approx}150\mu m$

Influence of the elastocapillary number

→ Coherent : much larger droplets lead to a larger elastocapillary number, thus softening the sample

Temperature transition for the larger droplets

- Much clearer transition
- Sample with smaller droplets shows a flatter curve
- Multiple behaviors in frequency sweep depending on the temperature showing the influence of the progressive solidification of the dispersed phase

Fractional rheology model

$$\eta$$
 $\Delta V, \alpha$ G

« spring-pot » with intermediate behavior:

$$\tau = V \frac{d^{\alpha} \gamma}{dt^{\alpha}}$$

$$\tau^* = V(\mathrm{i}\omega)^{\alpha}\gamma^*$$

Another way to view it: Infinite amount of relaxation times from small statistical events

How can we model a solid emulsion ?

Solid emulsion: simple mixing model $G^*_{emulsion} = f(\Phi) \ G^*_{PDMS} + g(\Phi) \ G^*_{droplets}$

 $\leq G_0$

 $\tilde{\eta}_1$

 $\overline{\tilde{\eta}_0}$

Preliminary fit results

