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A fascinating ability

 Throwing
an action which consists in accelerating a projectile and then releasing it 
so that it follows a ballistic trajectory. (From Wikipedia)  

 Throw and records 
>12000 occurrences in Guinness World Records
distance, speed, precision, frequency 

“Longest throw of an object with no tail” (427.2 m)
“Fastest Jai-Alai (Pelota) throw” (305.77 km/h)
“Most basketball free throws in three minutes” (201)
“Furthest distance to throw and catch an egg” (98.51 m)
“Farthest throw of a washing machine” (4.45 m)
“Most tea bags thrown into mugs in 30 seconds” (30)



  

Evolution of throwing in humans

 Humans
slow, weak, lack natural weapons
unique abilities among primates
hunting 2 Myr ago

 Anatomical features
rotation of the shoulder
elbow flexion

 Later development of tools/weapons
context: hunting, warfare, sports
spear - 0.5 Myr ago
bow - 70000 yr ago 
counterweight trebuchet 900 yr ago

Roach et al., Nature (2013)
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Hand throwing 

 Biomechanical aspects
sequential activation of many muscles

legs, hips, torso, shoulder, elbow, wrist
role of tendons

elastic energy storage and release
accumulation and transmission of kinetic energy 

 Available energy in shot putters
muscle power ~ 100 W/kg
muscle weight ~ 25 kg (20% of body mass)
activation time ~ 200 ms
available energy ~ 500 J

 Kinetic energy of the shot
vshot ~ 10 m/s, mshot  ~ 10 kg
KEshot = 1/2mshotv2

shot ~ 500 J

Lanka, biomechanics in sport (2008)



  

Always efficient ? A simple experiment

 Effect of the projectile mass
example in overarm throw 
not efficient with light projectiles

 Simple model

Cross, Am. J. Phys. (2008)
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Always efficient ? A simple experiment

 Effect of the projectile mass
example in overarm throw 
not efficient with light projectiles

 Simple model

 Implications
M ≈ 2 kg corresponds to hand and forearm
Difficulties to throw at large distances
Higher risk of injuries with light objects

Cross, Am. J. Phys. (2008)

available energy
 in muscles

kinetic energy (KE)
of the projectile 

kinetic energy remaining
in the body through the motion

 of a virtual mass M 



  

Light projectiles: need for a tool

 Efficiency KE/E0



  

Light projectiles: need for a tool

 Efficiency KE/E0

 Other strategies with tools 
hitting (golf, tennis, ...)
spinning (sling, hammer throw ...)
loading (bow, slingshot ...)

Cohen & Clanet, Europhys. News 2016



  

Scientific questions

 How to increase the throw efficiency of light objects ?

 Can we find other strategies than the use of a tool ?
• Mimic the action of tendons

 What input from soft matter and materials physics ?
• Find the good materials and geometries to reach 
relevant time scales



  

Main idea

 Basic geometry

maximum speed

Perfect throwing engine (M>>m)
Harmonic motion
Amplitude A, frequency f
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Main idea

 Basic geometry

 Case of a rigid object
        rigid object

optimal case
delayed force system

ejection speed

transferred energy

maximum speed

Perfect throwing engine (M>>m)
Harmonic motion
Amplitude A, frequency f



  

Solution: soft elastic projectiles

 Requirements
Delayed response and tunable time scale
Good elastic restitution

 Examples of quasi-1D gelatin hydrogels
Young modulus 12 kPa
Deformation wave speed c = 3.4 m/s  
Typical length L: 3 - 30 mm
Eigenfrequency f0=c/(2L): 60 - 600 Hz

1cm
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Solution: soft elastic projectiles

 Requirements
Delayed response and tunable time scale
Good elastic restitution 

 Examples of quasi-1D gelatin hydrogels
Young modulus 12 kPa
Deformation wave speed c = 3.4 m/s  
Typical length L: 3 - 30 mm
Eigenfrequency f0=c/(2L): 60 - 600 Hz

 Typical time sequence

A~1 mm
f~50 Hz




  

Solution: soft elastic projectiles

 Results
Effect of the size for a given frequency f 
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1cm

f~50 Hz
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Solution: soft elastic projectiles

f0/f

α
=

(V
e/

V
* p

)2
rigid object

 Results
Effect of the size for a given frequency f 

 Energy transfer factor
α=(Ve/V*

p)2 
Effect of the dimensionless frequency f0/f
Optimal ratio  f0/f ≈3-4 gives α≈2.5
Specific resonance effect
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 Energy transfer factor
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Effect of the dimensionless frequency f0/f
Optimal ratio  f0/f ≈3-4 gives α≈2.5
Specific resonance effect

 Other material/geometry
Polyacrylamide beads

rigid
soft

very soft

L~1 cm

../MoviesCatapult/M2_3SoftBalls_67Hz.avi
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Solution: soft elastic projectiles
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 Results
Effect of the size for a given frequency f 

 Energy transfer factor
α=(Ve/V*

p)2 
Effect of the dimensionless frequency f0/f
Optimal ratio  f0/f ≈3-4 gives α≈2.5
Specific resonance effect

 Other material/geometry
Polyacrylamide beads

f~
26

 H
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Solution: soft elastic projectiles

 General mechanism: superpropulsion
Matching deformation/throw dynamics  
Optimal value of the parameter  f0/f  ≈ 3-4
Gain in kinetic energy α ≈ 2.4-2.7

 
 Perfect agreement with models

f0/f  = 3.4 and α = 2.5

α
=

(V
e/

V
* p

)2

f0/f



  

Application 1: droplet ejection

 Droplet dynamics
Deformation associated with surface tension
Eigenfrequency
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Application 1: droplet ejection

 Droplet dynamics
Deformation associated with surface tension
Eigenfrequency

 Parameters
drop radius R ~ 1mm, f0 ~ 300Hz
catapult amplitude A ~ 1-10mm
catapult frequency f ~ 20-100Hz
catapult acceleration ~ 10g
ejection velocity Ve ~1m/s

energy transfer factor α

rescaled ejection time



  

Application 1: droplet ejection

 Applications
Droplet actuation and sorting
Energy saving
Already present in nature !
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Challita et al., Nature Com. 2023
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Application 2: boosting rigid projectiles



  

Application 2: boosting rigid projectiles

 Idea
Add a layer of soft elastic material at the bottom of rigid objects 

 Relevant parameters f0/f   →   cs/Lf and x

x=0
rigid case

x=1
soft case

../MoviesCatapult/MoviesBicomposite/f2_m_serie_Combined_Stacks_LR.avi


  

Application 2: boosting rigid projectiles

 Idea
Add a layer of soft elastic material at the bottom of rigid objects 

 Relevant parameters f0/f   →   cs/Lf and x

x=0
rigid case

x=1
soft case

cs/Lf=6.5

../MoviesCatapult/MoviesBicomposite/f2_m_serie_Combined_Stacks_LR.avi



  

Application 2: boosting rigid projectiles

 Idea
Add a layer of soft elastic material at the bottom of rigid objects 

 Relevant parameters f0/f   →   cs/Lf and x

x=0
rigid case

x=1
soft case

cs/Lf=2.9

../MoviesCatapult/MoviesBicomposite/f2_m_serie_Combined_Stacks_LR.avi



  

Application 2: boosting rigid projectiles

 Numerical approach
1D wave equation in both layers (cr>>cs) 
right boundary conditions

cs

cr
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Application 2: boosting rigid projectiles

 Numerical approach
1D wave equation in both layers (cr>>cs) 
right boundary conditions

 Results
Superpropulsion whatever x
Optimal crest

 Two limits

x→ 1, αmax=2.5
wave dynamics inside the soft layer
f0/f = 3.4 for the optimal case

x→ 0,  αmax=3
mass-spring system
f0/f = 1.6 for the optimal case 100% rigid 100% soft



  

Conclusion

 General mechanism: superpropulsion
Matching deformation/throw dynamics  
Specific resonance (physics and model dependent)

optimal value of the parameter  f0/f 
Different systems – same effect: 

waves, mass-spring system, surface tension, ...

 Input from soft matter and materials physics
Tunable properties, low elastic modulii
Typical acceleration time around 10-100 ms … can be extended !

 Applications in throws
250-300% gain in kinetic energy for light objects



  

 Impact of bilayered projectiles 
        

100% rigid
hard plastic

100% soft
gelatin hydrogel

Related works
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