Throwing objects with the superpropulsion effect

G. Giombini, C. D'Angelo, F. Celestini, C. Raufaste

Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), 06200 Nice, France
Institut Universitaire de France (IUF), 75005 Paris, France
A fascinating ability

- Throwing
 an action which consists in accelerating a projectile and then releasing it so that it follows a ballistic trajectory. (From Wikipedia)

- Throw and records
 >12000 occurrences in Guinness World Records
distance, speed, precision, frequency

 “Longest throw of an object with no tail” (427.2 m)
 “Fastest Jai-Alai (Pelota) throw” (305.77 km/h)
 “Most basketball free throws in three minutes” (201)
 “Furthest distance to throw and catch an egg” (98.51 m)
 “Farthest throw of a washing machine” (4.45 m)
 “Most tea bags thrown into mugs in 30 seconds” (30)
Evolution of throwing in humans

- **Humans**
 - slow, weak, lack natural weapons
 - unique abilities among primates
 - hunting 2 Myr ago

- **Anatomical features**
 - rotation of the shoulder
 - elbow flexion

- **Later development of tools/weapons**
 - context: hunting, warfare, sports
 - spear - 0.5 Myr ago
 - bow - 70000 yr ago
 - counterweight trebuchet 900 yr ago

Hand throwing

- **Biomechanical aspects**
 - sequential activation of many muscles: legs, hips, torso, shoulder, elbow, wrist
 - role of tendons
 - elastic energy storage and release
 - accumulation and transmission of kinetic energy

- **Available energy in shot putters**
 - muscle power ~ 100 W/kg
 - muscle weight ~ 25 kg (20% of body mass)
 - activation time ~ 200 ms
 - available energy ~ 500 J

- **Kinetic energy of the shot**
 - \(v_{\text{shot}} \sim 10 \text{ m/s}, m_{\text{shot}} \sim 10 \text{ kg} \)
 - \(KE_{\text{shot}} = \frac{1}{2} m_{\text{shot}} v^2_{\text{shot}} \sim 500 \text{ J} \)
Always efficient? A simple experiment

- Effect of the projectile mass
 example in overarm throw
 not efficient with light projectiles

- Simple model
 kinetic energy of the projectile
 \[E_0 = KE = \frac{1}{2}mv^2 \]
 or \[V = \sqrt{\frac{2E_0}{m}} \]
 available energy in muscles

Always efficient? A simple experiment

- Effect of the projectile mass
 example in overarm throw
 not efficient with light projectiles

- Simple model

 \[E_0 = K \cdot E = \frac{1}{2} m V^2 \quad \text{or} \quad V = \sqrt{2 E_0 / m} \]

 available energy in muscles

Always efficient? A simple experiment

- **Effect of the projectile mass**
 example in overarm throw
 not efficient with light projectiles

- **Simple model**
 kinetic energy (KE)
 of the projectile
 \[E_0 = \frac{1}{2} m V^2 + \frac{1}{2} M V^2 \]
 available energy in muscles
 kinetic energy remaining in the body through the motion of a virtual mass \(M \)

- **Implications**
 \(M \approx 2 \) kg corresponds to hand and forearm
 Difficulties to throw at large distances
 Higher risk of injuries with light objects

\[KE = \frac{E_0}{1 + M/m} \]

Light projectiles: need for a tool

- **Efficiency KE/E₀**

<table>
<thead>
<tr>
<th>Limit</th>
<th>Projectile</th>
<th>Handthrow M ~ 2 kg</th>
<th>Throw with instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>m>M</td>
<td>shot put (~7.3 kg)</td>
<td>KE/E₀ ~ 80 %</td>
<td>-</td>
</tr>
<tr>
<td>m<<M</td>
<td>basque pelota (~150 g)</td>
<td>KE/E₀ ~ 7 %</td>
<td>chistera V=35 m/s, KE≈150 J KE/E₀ ~ 30-35 %</td>
</tr>
</tbody>
</table>
Light projectiles: need for a tool

☐ Efficiency KE/E_0

<table>
<thead>
<tr>
<th>Limit</th>
<th>Projectile</th>
<th>Handthrow $M \sim 2 \text{ kg}$</th>
<th>Throw with instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m>M$</td>
<td>shot put ($\sim7.3 \text{ kg}$)</td>
<td>$KE/E_0 \sim 80 %$</td>
<td>-</td>
</tr>
<tr>
<td>$m\ll M$</td>
<td>basque pelota ($\sim150 \text{ g}$)</td>
<td>$KE/E_0 \sim 7 %$</td>
<td>chistera V$\approx35 \text{ m/s}$, $KE\approx150 \text{ J}$ $KE/E_0 \sim 30-35 %$</td>
</tr>
</tbody>
</table>

☐ Other strategies with tools
- hitting (golf, tennis, ...)
- spinning (sling, hammer throw ...)
- loading (bow, slingshot ...)

Scientific questions

☐ How to increase the throw efficiency of light objects?

☐ Can we find other strategies than the use of a tool?
 • Mimic the action of tendons

☐ What input from soft matter and materials physics?
 • Find the good materials and geometries to reach relevant time scales
Main idea

- Basic geometry

Perfect throwing engine ($M \gg m$)
Harmonic motion
Amplitude A, frequency f

$$z_p(t) = A[1 - \cos(2\pi ft)]$$
$$V_p^* = 2\pi fA$$ maximum speed
Main idea

- **Basic geometry**
 - Perfect throwing engine ($M \gg m$)
 - Harmonic motion
 - Amplitude A, frequency f
 - Equation: $z_p(t) = A[1 - \cos(2\pi ft)]$
 - Maximum speed: $V_p^* = 2\pi fA$

- **Case of a rigid object**
 - Ejection speed: $V_e = V_p^*$
 - Transferred energy: $\int_0^{t_e} F(t)\dot{z}_p(t)\,dt$
Main idea

- Basic geometry
- Case of a rigid object

Ejection speed:
\[V_e = V_p^* \]

Transferred energy:
\[\int_0^{t_e} F(t) \dot{z}_p(t) \, dt \]

Perfect throwing engine (M \gg m)

Harmonic motion

Amplitude \(A \), frequency \(f \)

\[z_p(t) = A \left[1 - \cos(2\pi ft) \right] \]

\[V_p^* = 2\pi fA \] maximum speed
Solution: soft elastic projectiles

Requirements
- Delayed response and tunable time scale
- Good elastic restitution

Examples of quasi-1D gelatin hydrogels
- Young modulus 12 kPa
- Deformation wave speed \(c = 3.4 \text{ m/s} \)
- Typical length \(L: 3 - 30 \text{ mm} \)
- Eigenfrequency \(f_0 = c/(2L) : 60 - 600 \text{ Hz} \)
Solution: soft elastic projectiles

☐ Requirements
 Delayed response and tunable time scale
 Good elastic restitution

☐ Examples of quasi-1D gelatin hydrogels
 Young modulus 12 kPa
 Deformation wave speed \(c = 3.4 \text{ m/s} \)
 Typical length \(L: 3 - 30 \text{ mm} \)
 Eigenfrequency \(f_0 = \frac{c}{2L} \): 60 - 600 Hz

\[A \approx 1 \text{ mm} \]
\[f \approx 50 \text{ Hz} \]
Solution: soft elastic projectiles

- **Requirements**
 - Delayed response and tunable time scale
 - Good elastic restitution

- **Examples of quasi-1D gelatin hydrogels**
 - Young modulus 12 kPa
 - Deformation wave speed $c = 3.4 \text{ m/s}$
 - Typical length L: 3 - 30 mm
 - Eigenfrequency $f_0 = c/(2L)$: 60 - 600 Hz

- **Typical time sequence**
 - $A \sim 1 \text{ mm}$
 - $f \sim 50 \text{ Hz}$
Solution: soft elastic projectiles

☐ Results
Effect of the size for a given frequency f

$1cm$

$f \approx 50 \text{ Hz}$
rigid
Solution: soft elastic projectiles

- Results
 Effect of the size for a given frequency f
Solution: soft elastic projectiles

□ Results
 Effect of the size for a given frequency f

□ Energy transfer factor
 $\alpha = (V_e/V_p^*)^2$
 Effect of the dimensionless frequency f_0/f
 Optimal ratio $f_0/f \approx 3-4$ gives $\alpha \approx 2.5$
 Specific resonance effect
Solution: soft elastic projectiles

- **Results**
 - Effect of the size for a given frequency \(f \)

- **Energy transfer factor**
 - \(\alpha = \left(\frac{V_e}{V_p^*}\right)^2 \)
 - Effect of the dimensionless frequency \(f_0/f \)
 - Optimal ratio \(f_0/f \approx 3-4 \) gives \(\alpha \approx 2.5 \)
 - Specific resonance effect

- **Other material/geometry**
 - Polyacrylamide beads
 - \(E \approx 1 - 10 \text{ kPa} \)
 - \(f_0 \approx \frac{1}{L} \sqrt{\frac{E}{\rho}} \)
 - \(50 - 200 \text{ Hz} \)
Solution: soft elastic projectiles

- **Results**
 - Effect of the size for a given frequency f

- **Energy transfer factor**
 - $\alpha = (\frac{V_e}{V^*_p})^2$
 - Effect of the dimensionless frequency f_0/f
 - Optimal ratio $f_0/f \approx 3-4$ gives $\alpha \approx 2.5$
 - Specific resonance effect

- **Other material/geometry**
 - Polyacrylamide beads

$$E \approx 1 - 10 \text{ kPa}$$

$$f_0 \sim \frac{1}{L} \sqrt{\frac{E}{\rho}}$$

50 – 200 Hz
Solution: soft elastic projectiles

□ Results
Effect of the size for a given frequency f

□ Energy transfer factor
\[\alpha = \left(\frac{V_e}{V_p^*} \right)^2 \]
Effect of the dimensionless frequency f_0/f
Optimal ratio $f_0/f \approx 3-4$ gives $\alpha \approx 2.5$
Specific resonance effect

□ Other material/geometry
Polyacrylamide beads

\[E \approx 1 - 10 \text{ kPa} \]
\[f_0 \sim \frac{1}{L} \sqrt{\frac{E}{\rho}} \]
50 – 200 Hz

rigid object
Solution: soft elastic projectiles

- General mechanism: superpropulsion
 - Matching deformation/throw dynamics
 - Optimal value of the parameter $f_0/f \approx 3-4$
 - Gain in kinetic energy $\alpha \approx 2.4-2.7$

- Perfect agreement with models
 - $f_0/f = 3.4$ and $\alpha = 2.5$
Application 1: droplet ejection

- Droplet dynamics
 - Deformation associated with surface tension
 - Eigenfrequency

\[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]
Application 1: droplet ejection

- Droplet dynamics
 Deformation associated with surface tension
 Eigenfrequency
 \[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]

- Parameters
 drop radius \(R \sim 1\text{mm}, f_0 \sim 300\text{Hz} \)
catapult amplitude \(A \sim 1-10\text{mm} \)
catapult frequency \(f \sim 20-100\text{Hz} \)
catapult acceleration \(\sim 10\text{g} \)
ejection velocity \(V_e \sim 1\text{m/s} \)

adhesionless substrates
collaboration with chemists
\(f=37\text{Hz} \quad A=1.4\text{mm} \)
Application 1: droplet ejection

- **Droplet dynamics**
 - Deformation associated with surface tension
 - Eigenfrequency

 \[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]

- **Parameters**
 - drop radius \(R \sim 1\text{mm}, f_0 \sim 300\text{Hz} \)
 - catapult amplitude \(A \sim 1-10\text{mm} \)
 - catapult frequency \(f \sim 20-100\text{Hz} \)
 - catapult acceleration \(\sim 10\text{g} \)
 - ejection velocity \(V_e \sim 1\text{m/s} \)

adhesionless substrates

- collaboration with chemists

\[f=37\text{Hz} \quad A=1.4\text{mm} \]
Application 1: droplet ejection

- **Droplet dynamics**
 - Deformation associated with surface tension
 - Eigenfrequency
 \[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]

- **Parameters**
 - drop radius \(R \sim 1\text{mm}, f_0 \sim 300\text{Hz} \)
 - catapult amplitude \(A \sim 1\text{-}10\text{mm} \)
 - catapult frequency \(f \sim 20\text{-}100\text{Hz} \)
 - catapult acceleration \(\sim 10g \)
 - ejection velocity \(V_e \sim 1\text{m/s} \)

adhesionless substrates
collaboration with chemists
\(f=37\text{Hz} \) \(A=1.4\text{mm} \)
Application 1: droplet ejection

- **Droplet dynamics**
 - Deformation associated with surface tension
 - Eigenfrequency
 \[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]

- **Parameters**
 - drop radius \(R \sim 1\text{mm}, f_0 \sim 300\text{Hz} \)
 - catapult amplitude \(A \sim 1\text{-}10\text{mm} \)
 - catapult frequency \(f \sim 20\text{-}100\text{Hz} \)
 - catapult acceleration \(\sim 10\text{g} \)
 - ejection velocity \(V_e \sim 1\text{m/s} \)

adhesionless substrates

collaboration with chemists

\(f=37\text{Hz} \) \(A=1.4\text{mm} \)
Application 1: droplet ejection

☐ Droplet dynamics
Deformation associated with surface tension
Eigenfrequency

\[f_0 \sim \sqrt{\frac{\gamma}{\rho R^3}} \]

☐ Parameters
drop radius \(R \sim 1\text{mm}, f_0 \sim 300\text{Hz} \)
catapult amplitude \(A \sim 1-10\text{mm} \)
catapult frequency \(f \sim 20-100\text{Hz} \)
catapult acceleration \(\sim 10\text{g} \)
ejection velocity \(V_e \sim 1\text{m/s} \)

\[\alpha = \left(\frac{V_e}{V_p}\right)^2 \]

Energy transfer factor \(\alpha \)

Rescaled ejection time \(t_e/T \) vs. \(f_0/f \)
Application 1: droplet ejection

- Applications
 - Droplet actuation and sorting
 - Energy saving
 - Already present in nature!
Application 1: droplet ejection

- Applications
 - Droplet actuation and sorting
 - Energy saving
 - Already present in nature!

Droplet superpropulsion in an energetically constrained insect
Sharpshooters need to evacuate 300x their mass in urine everyday!
Challita et al., Nature Com. 2023
Application 1: droplet ejection

- Applications
 - Droplet actuation and sorting
 - Energy saving
 - Already present in nature!

Droplet superpropulsion in an energetically constrained insect
Sharpshooters need to evacuate 300x their mass in urine everyday!
Challita et al., Nature Com. 2023
Application 2: boosting rigid projectiles
Application 2: boosting rigid projectiles

Idea
Add a layer of soft elastic material at the bottom of rigid objects

Relevant parameters $f_0/f \rightarrow c_s/Lf$ and x
Application 2: boosting rigid projectiles

- **Idea**
 Add a layer of soft elastic material at the bottom of rigid objects

- **Relevant parameters**
 \[\frac{f_0}{f} \rightarrow \frac{c_s}{Lf} \] and \(x \)

- \(\frac{c_s}{Lf} = 6.5 \)
Application 2: boosting rigid projectiles

- **Idea**
 Add a layer of soft elastic material at the bottom of rigid objects

- **Relevant parameters**
 \[\frac{f_0}{f} \rightarrow \frac{c_s}{Lf} \text{ and } x \]

- \(c_s/Lf = 2.9 \)
Application 2: boosting rigid projectiles

- Numerical approach
 1D wave equation in both layers ($c_r >> c_s$)
 right boundary conditions
Application 2: boosting rigid projectiles

- **Numerical approach**
 - 1D wave equation in both layers ($c_r \gg c_s$)
 - Right boundary conditions
Application 2: boosting rigid projectiles

- **Numerical approach**
 1D wave equation in both layers ($c_r >> c_s$)
 right boundary conditions

- **Results**
 Superpropulsion whatever x
 Optimal crest
Application 2: boosting rigid projectiles

- **Numerical approach**
 1D wave equation in both layers ($c_r >> c_s$)
 right boundary conditions

- **Results**
 Superpropulsion whatever x
 Optimal crest

- **Two limits**
 $x \rightarrow 1$, $a_{max} = 2.5$
 wave dynamics inside the soft layer
 $f_0/f = 3.4$ for the optimal case

 $x \rightarrow 0$, $a_{max} = 3$
 mass-spring system
 $f_0/f = 1.6$ for the optimal case
Conclusion

- **General mechanism: superpropulsion**
 - Matching deformation/throw dynamics
 - Specific resonance (physics and model dependent)
 - optimal value of the parameter f_0/f
 - Different systems – same effect:
 - waves, mass-spring system, surface tension, ...

- **Input from soft matter and materials physics**
 - Tunable properties, low elastic modulii
 - Typical acceleration time around 10-100 ms … can be extended!

- **Applications in throws**
 - 250-300% gain in kinetic energy for light objects
Related works

- Impact of bilayered projectiles

100% rigid 100% soft
hard plastic gelatin hydrogel
Related works

- Impact of bilayered projectiles
Related works

- Impact of bilayered projectiles
Acknowledgments

- Investigators at the physics institute of Nice
 - Franck Celestini
 - Christophe d'Angelo
 - Guillaume Giombini
 - Médéric Argentina
 - Cyrille Claudet

- Collaborators and sponsors
 - Joachim Mathiesen
 - Niels Bohr Institute
 - Copenhagen
 - Laurence Viennot
 - MSC
 - Paris

Logos of Université Côte d'Azur, CNRS, InPhyni, IUF, and Agence Innovation Défense.