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Cleaned with piranha solution and UV Ozone, the
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be silanized by vapor deposition and so becomes

Double face tape
hydrophobic with a finite slip length b.

Glass coverslip

X
1 px =114 nm = Spatial uncertainty : gy, ~ OPSE__ ~ 20 nm
\/Nphotons u
Z
Localization Tracking Single PEG trajectory { b=10nm

3" il; _S_),(» Bare hydrophilic Silanized hydrophobic

; ; _ surface surface
Frame 1 Frame n =

LY gl

| We assume a fully developed Poiseuille flow in the channel. With geometrical approximations and the
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/@ and to skewed adsorption. ™ Conclusion and upcoming perspectives

The chain behavior is approximated by a two-step random walk, with successive adsorption and jumps.
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How does the molecular size affect the dynamic coupling with the flow ? Is there a

revents chain desorption on hydrophobic surfaces !
P P yarop minimum size, below which flow has no impact ?

leferen.t surfaces , .Iead to distinct | ump dISt”bUtlo_n and  re- Keeping the fluorescent macromolecule concentration constant, it should be
adsorption probability. Jump number might be described by an possible to increase chain concentration to investigate denser regimes : are similar
\exponential-like probability law:  P(n) = e™ 108(P) (1- P) .\/\ T~ / effects observed in semi-dilute or melt regimes ?
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