

Compton Scattering - 100 years

Classical view point (relativistic)

$$
\lambda_{s}-\lambda-=\frac{h}{m c}(1-\operatorname{Cos}(\theta))=\lambda_{c}(1-\operatorname{Cos}(\theta))
$$

A Quantum Theory of the Scattering of X-rays by Light Elements A. H. Compton Phys. Rev. 21, 483-502 (1923)

$$
\lambda_{c}=0,0024 \mathrm{~nm}=500 \mathrm{keV}
$$

Quantum version QED

Same result as for the classical calculation

Quantum version « classical »

$T=\int d \tau\langle\boldsymbol{k}, \tau| \boldsymbol{A}_{s}(\boldsymbol{r}, \tau) \cdot \boldsymbol{A}_{0}(\boldsymbol{r}, \tau)|0, \tau\rangle \quad$ We assume $\frac{\delta \lambda}{\lambda} \ll 1 \Leftrightarrow \lambda_{c} \ll \lambda$
Provides the same result as for the other approaches

Compton scattering - PES

COLTRIM - Coincidence measurement electron/ion

$h \nu=2,5 \mathrm{keV}$
PO4 beamline at PETAIII,DESY
M. Kircher et al. Nature Physics 16, 756-760 (2020)

$T=\int d \tau\langle\boldsymbol{k}, \tau| \boldsymbol{A}_{S}(\boldsymbol{r}, \tau) . \boldsymbol{A}_{0}(\boldsymbol{r}, \tau)|0, \tau\rangle$
Polar plot in the frame of the photon-momentum transfer \boldsymbol{K}

Angular asymetry due to the momentum transfer

Stimulated Compton Scattering Application to H

H. Bachau Phys. Rev. Lett. 112, 073001 (2014)

$$
\mathcal{H}=H_{a t}+\boldsymbol{A}(\boldsymbol{r}, t) \cdot \boldsymbol{P}+\frac{1}{2} \boldsymbol{A}^{2}(\boldsymbol{r}, t) \quad \boldsymbol{\nabla} \cdot \mathbf{A}=0
$$

$$
\boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{A}_{1}(\boldsymbol{r}, t)+\boldsymbol{A}_{2}(\boldsymbol{r}, t) \quad \begin{aligned}
& \text { Total field is the sum of } \\
& \text { the two fields }
\end{aligned}
$$

$$
\boldsymbol{A}_{i}(\boldsymbol{r}, t)=A_{i}\left(t-\alpha \boldsymbol{n}_{i} \cdot \boldsymbol{r}\right) \boldsymbol{e}_{z} \approx\left(A_{i}(t)+\alpha F_{i}(t) \boldsymbol{n}_{i} \cdot \boldsymbol{r}\right) \boldsymbol{e}_{z} \quad \text { Non-dipole contribution }
$$

$$
\mathcal{H}=H_{a t}+H_{D A}+H_{R E T}^{A P}+H_{R E T}^{A^{2}}
$$

$$
H_{D A}=\mathrm{A}(\mathrm{t}) \mathbf{P} \cdot \boldsymbol{e}_{z} \quad H_{R E T}^{A P}=\alpha \boldsymbol{F}_{p o l}(t) . \mathbf{r P} \cdot \boldsymbol{e}_{z} \quad H_{R E T}^{A^{2}}=\alpha \boldsymbol{F}_{\text {prop }}(t) \cdot \mathbf{r A}(\mathrm{t})
$$

The eigenstates of the field-free Hamiltonian are computed (bound and continnum) to generate the coupling matrix of the field operator. The Time Dependent Schrödinger equation is then solved numerically in the Interaction picture.

Stimulated Compton Scattering
Two-Color Ionization of H in keV regime

$\beta=\widehat{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}}$

Field parameters
$\omega_{1}=55 \mathrm{a} . \mathrm{u} .(1496 \mathrm{eV})$
$\omega_{2}=50 \mathrm{a} . \mathrm{u} .(1360 \mathrm{eV})$
$\tau_{1}=\tau_{2}=6 \pi$ a.u. (452 as)
$I_{1}=I_{2}=I_{0}$, where $I_{0} \approx 3.51$ $\times 10^{16} \mathrm{~W} / \mathrm{cm}^{2}$.

Same behavior for most atoms investigated in particular for the angular distribution. Is it a universal pattern?

Stimulated Compton Scattering in H_{2}

A. Sopena Phys. Rev. A 105, 033104 (2022)
A. Sopena Nat. Com. 4, 253 (2021)

Selection rules in the molecule due to the different channels:

- A.P contributions

$$
\begin{gathered}
X^{1} \sum_{g}^{+} \xrightarrow{\epsilon_{z}}{ }^{1} \sum_{g}^{+} \\
X^{1} \sum_{g}^{+} \xrightarrow{\epsilon_{x} / \epsilon_{y}}{ }^{1} \sum_{g}^{+},{ }^{1} \Delta_{g}
\end{gathered}
$$

Axis of quantization : polarisation axis

- A^{2} contributions

$$
\begin{aligned}
& X^{1} \sum_{g}^{+} \xrightarrow{n_{z}} \sum_{u}^{+} \\
& X^{1} \sum_{g}^{+} \xrightarrow{n_{x} / n_{y}}{ }^{1} \Pi_{u} .
\end{aligned}
$$

Axis of quantization :
propagation axis

Angle integrated energy distribution + MFPAD in H_{2}

 Two-pulse configuration

Fixed field configuration

(c)

Angle integrated energy distribution + MFPAD in H_{2}

 One-pulse configuration

Conclusion and prospective

- We show the quantum nature of the process and in particular that the usual picture of momentum absorption is not sufficient + complex pattern in the molecular case
- Usage very intense X-ray pulses and ultrashort for intraband processes (The advance of FEL source allows for such configurations)

What's next ?

- Include more terms of the Taylor expansion and include the spin in the dynamics ... under going
- Study the case of more complex fields in particular dichroism

Acknowledgments

Alicia Palacios
Fernando Martin

Henri Bachau

Modèle TDPT

Cross-section $\frac{\mathrm{d} \sigma}{\mathrm{d} E_{\mathrm{c}} \mathrm{d} \Omega_{\mathrm{e}} \mathrm{d} \Omega_{2}}=r_{e}^{2} p_{e} e_{\mathrm{e}} /\left.M\right|^{2}$
With amplitude transition $M\left(\mathbf{Q}, \mathbf{p}_{e}\right)=\left(\mathbf{e}_{1} \cdot \mathbf{e}_{2}\right)\left\langle\Psi_{\mathbf{P}_{e}(-)}^{(-)} \sum_{j=1}^{N} \mathrm{e}^{i \boldsymbol{Q} \boldsymbol{r}_{j} \mid} \mid \Psi_{0}\right\rangle$
And final wave function $\tilde{\psi}_{\mathrm{p}_{c}}^{(-)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{\mathbf{p}_{\mathrm{c}}}^{\mathrm{C}}\left(\mathbf{r}_{1}\right) \psi_{0}^{\left.\mathrm{He}^{++}\left(\mathbf{r}_{2}\right)+\psi_{\mathrm{p}_{c}}^{C}\left(\mathbf{r}_{2}\right) \psi_{0}^{\mathrm{He}^{+}}\left(\mathbf{r}_{1}\right)\right]}\right.$
For unpolarized field $\frac{\mathrm{d} \sigma}{\mathrm{dE} \mathrm{E}_{\mathrm{e}} \mathrm{d} \mathrm{d} \mid \Omega_{2}}=\left.\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega_{2}}\right)_{\mathrm{Th}} p_{\mathrm{e}}| | M_{\mathrm{e}}\right|^{2} \quad$ With $\quad\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega_{2}}\right)_{\mathrm{Th}}=\frac{1}{2} r_{\mathrm{e}}^{2}\left(1+\cos ^{2} \theta\right)$

$$
M_{\mathrm{e}}\left(\mathbf{Q}, \mathbf{p}_{\mathrm{e}}\right)=\left\langle\boldsymbol{\Psi}_{\mathbf{P}_{\mathrm{e}}}^{(-)}\right| \sum_{j=1}^{N} \mathrm{e}^{i \mathbf{Q} \cdot \mathbf{r}_{\mathrm{j}}}\left|\Psi_{0}\right\rangle
$$

Modèle TDSE

- The wave function is expanded on a basis of 6880 correlated two-electron states described as linear combinations of anti-symmetrized products of $\mathrm{H} 2+$ orbitals
- The ionic orbitals wave function is represented in a basis of radial B-spline functions and spherical harmonics $\left(\ell_{\max }=16\right)$ and a radial box size of up to 60 a.u.
- The total wf includes 280 of these functions. The typical number of configurations used for continuum states is 280 and for bound states, it varies between 390 and 700. The continuum states included in the expansion satisfy the proper incoming scattering boundary conditions
- The TDSE is solved using an RK4 predictor-corrector propagator.

