Detecting single electron spin resonance with a single microwave photon counter

arXiv:2301.02653 (Nature in press)

Wang, Balembois, Billaud, Albertinale, Le Dantec, Rancic Estève, Vion, Bertet, Flurin

Quantronics group / SPEC

DE LA RECHERCHE A L'INDUSTR

Free electron spin $\gamma_e = 28.0249514242(85) \text{ GHz/T}$

signal

Magnetic field B_0

Free electron spin $\gamma_e = 28.0249514242(85) \text{ GHz/T}$

Biology

Quantum Computing

Biology

Quantum Computing

Biology

Quantum Computing

Quantum Computing

Intro

R.J. Blume, "Electron spin relaxation times in sodium- ammonia solutions", Phys. Rev. 109, 1867 (1958).

Electron Spin Resonance

A. Schweiger and G. Jeschke, « Principles of pulse electron paramagnetic resonance » (Oxford University Press, 2001).

Superconducting **Coupling Resonator** & Quantum Limited Amplifier

 $100 \text{ spins}/\sqrt{\text{Hz}}$

[Ranjan et al. Appl. Phys. Lett. **116**, 184002 (2020)]

Fluorescence At Microwave Frequency

Fluorescence detection is ubiquitous in optics: atoms, molecules, NVs, ...

Fluorescence At Microwave Frequency

Fluorescence detection is ubiquitous in optics: atoms, molecules, NVs, ...

Can we detect spins by their microwave (MW) fluorescence?

[Albertinale et al. Nature **600**, 434 (2021)]

Fluorescence At Microwave Frequency

Fluorescence detection is ubiquitous in optics: atoms, molecules, NVs, ...

Quantum Optics 101

Quantum Optics 101

Wave-Like **Field Detector** a+aVacuum Fluctuations **Particle-Like** ↑ click **Photon Detector** Noiseless **Absence Of Clicks**

Quantum Optics 101

Wave-Like

single photon

Excess Fluctuations

Particle-Like ↑ click

 $\rightarrow t$

Single Clicks

Detecting Photons At Microwave Frequency

$$\frac{\omega_a}{2\pi} = 7 \text{ GHz}$$
$$Q_a = 5 \cdot 10^4$$
$$\chi_a = 5 \cdot 4 \text{ MHz}$$

$$\frac{\omega_q}{2\pi} = 6, 2 \text{ GHz}$$

$$T_1 = 30 \ \mu s$$

$$\frac{\omega_b}{2\pi} = 7,7 \text{ GHz}$$
$$Q_a = 4 \cdot 10^3$$
$$\chi_a = 19 \text{ MHz}$$

Sample design

$$\frac{\omega_a}{2\pi} = 7 \text{ GHz}$$
$$Q_a = 5 \cdot 10^4$$
$$\chi_a = 5 \cdot 4 \text{ MHz}$$

$$\frac{\omega_q}{2\pi} = 6, 2 \text{ GHz}$$

$$T_1 = 30 \ \mu s$$

$$\frac{\omega_b}{2\pi} = 7,7 \text{ GHz}$$
$$Q_a = 4 \cdot 10^3$$
$$\chi_a = 19 \text{ MHz}$$

Sample design

Quantum efficiency and darkcount rate

Darkcount rate

$$\alpha = 85 \ s^{-1}$$

$$\alpha = 85 \ s^{-1}$$

$$\alpha = 85 \ s^{-1}$$

$$\alpha = 85 \ s^{-1}$$

$$\alpha = 85 \ s^{-1}$$

Efficacité quantique et taux de compte d'obscurité

Darkcount rate

$$\alpha = 85 \ s^{-1}$$

Operational Efficiency : $\eta = 45\%$

Efficacité quantique et taux de compte d'obscurité

Darkcount rate

Operational Efficiency : $\eta = 45\%$

Power sensitivit

$$\alpha = 85 \ s^{-1}$$

ty:
$$\hbar\omega \frac{\sqrt{\alpha}}{\eta} = 10^{-22} \text{ W}/\sqrt{\text{Hz}}$$

Efficacité quantique et taux de compte d'obscurité

Darkcount rate

SMPD

click

Operational Efficiency : $\eta = 45\%$

Power sensitivit

Bandwidth: BW = 0.5 MHz

$$\alpha = 85 \ s^{-1}$$

ty:
$$\hbar\omega \frac{\sqrt{\alpha}}{\eta} = 10^{-22} \text{ W}/\sqrt{\text{Hz}}$$

Long-term SMPD operation

Scheelite

Er: CaWO₄

Scheelite

Er: CaWO₄

Scheelite

Er: CaWO₄

 B_0

S

Coupling spins to a microwave resonator

Er³⁺:CaWO₄

ø

ø

Ø

P. Goldner

Spin relaxation in the microwave domain

Photons in free space ~1000 years Phonons in lattice ~1 s

Coupling spins to a microwave resonator

Spin – microwave photon coupling

$$g_0 = \delta \mathbf{B_1} \cdot \gamma \cdot \langle \uparrow | \mathbf{\hat{S}} | \downarrow \rangle$$

Coupling spins to a microwave resonator

Spin – microwave photon coupling

$$g_0 = \delta \mathbf{B_1} \cdot \gamma \cdot \langle \uparrow | \mathbf{\hat{S}} | \downarrow \rangle$$

Purcell Effect

$B_0//c$ -axis

Single Spin Detection

Experiment

Nanowire resonator on Er:CaWO4

MIT JTWPA

1T/1T/1T vector magnet

Single Microwave Photon Detector

Microwave fluorescence detection of spins

Microwave fluorescence detection of spins

Detecting spins by their fluorescence with a microwave photon counter Nature 600, 434-438 (2021)

High-power spectroscopy

Integration time : 200ms

High-power spectroscopy : angular dependence

Integration time : 2ms

Low-power spectroscopy $(\theta = 0^\circ)$

Low-power spectroscopy $(\theta = 0^\circ)$

Low-power spectroscopy : angular dependence

Rabi oscillations

Intensity-intensity correlations

$\frac{\langle C(0)C(\tau)\rangle}{\langle C(0)\rangle\langle C(\tau)\rangle}$

Intensity-intensity correlation function

Single-ion coherence time (1) : Ramsey

Purcell effect on a single spin

Single-ion coherence time (2) : Hahn echo

Single-ion coherence time (3) : 3-Pulse Dynamical Decoupling

Probing the nuclear environment

signal

spin resonance

magnetic environement

Probing the nuclear environment

Probing the nuclear environment

Dynamical decoupling

Dynamical decoupling as a nuclear spin probe 2τ

Dynamical decoupling as a nuclear spin probe

$$2\tau = (2k+1) - \omega$$

Taminiau et al. PRL 2012 Kolkowitz et al. PRL 2012

Dynamical decoupling as a nuclear spin probe

Dynamical decoupling as a nuclear spin probe

 $\frac{\omega_L}{2\pi B_0} = 1.78 \text{ MHz/mT} = \gamma_W !$

Conclusion

Single Spin Fluorescence Detection

- Universal \bullet
- Large detection volume ($\sim 10 \mu m^3$)
- $1 \operatorname{Er}^{3+}/\sqrt{Hz}$, large improvements possible
- Does not require long coherence time ullet

Conclusion

Strong academic & industrial effort for circuits

- **SMPD development** $\hbar \omega \frac{\sqrt{\alpha}}{\eta} = 10^{-23} \text{ W}/\sqrt{\text{Hz}}$ x10 sensitivity = x100 integration time
 - Advanced antenna design for enhanced magnetic focusing
 - New spin species in new substrates
 - single nuclear spin

Architecture for spin-based quantum computing

- Coherence times up to second
- Interfacing with microwave photons, superconducting circuits, and nuclear spins

Practical single-spin EPR spectroscopy lacksquareat millikelvin temperature (transition ions & radicals in molecules, ...)

Perspective

Thanks!

J. Travesedo

L. Balembois Z. Wang

P. Goldner

Many thanks to W. Olliver and MIT/Lincoln Labs for providing us with a JTWPA

L. Pallegoix

A. May

