Deterministic Free-Propagating Photonic Qubits with Negative Wigner Functions

Valentin Magro, Julien Vaneecloo, Sebastien Garcia and Alexei Ourjoumtsev

Young Physics Teams of Collège de France

A new experimental platform

Why making photons interact ? And How ?

- Photons can carry information as qubits without dephasing
- Need highly nonlinear medium

Single emitters:

• Photon extraction η_{cav} and cooperativity C:

• $\eta_{cav} = \frac{\kappa_{\parallel}}{\kappa_{\parallel} + \kappa_{\perp}} = \frac{Transmission}{Transmission + Losses}$ • $C = \frac{g^2}{2 \kappa \gamma} = \frac{Scattering \ cross \ section}{Beam \ cross \ section} \times \frac{1}{Transmission + Losses}$

•
$$\eta_C = \frac{2C}{1+2C}$$
, mapping efficiency

- Technical limitations :
 - high reflectivity with low losses mirror
 - small volume cavity →less control on atom cavity coupling

• Rydberg atoms in free space

• Rydberg atoms in free space

- At resonance $\Delta = 0$, absorption
 - Photon Transistor
 - Photon sources
- Out of resonance $\Delta \neq 0$, dispersion
 - Photonic molecules
 - 2 photon gates

• Rydberg atoms in free space

- At resonance $\Delta = 0$, absorption
 - Photon Transistor
 - Photon sources
- Out of resonance $\Delta \neq 0$, dispersion
 - Photonic molecules
 - 2 photon gates
- Physical limitations:
 - Strong nonlinearity → Needs high optical density
 - \rightarrow high atomic density \rightarrow losses

Reviews:

Murray & Pohl, AAMOP **65**, 321 (2016) Firstenberg, Adams & Hofferberth, J. Phys. B **49**, 152003 (2016) Wu &al, Chin. Phys. B **30**, 020305 (2021)

 $\langle r \rangle \propto a_0 n^{*2} \sim 1 \,\mu m!$

Experimental platform

- Medium finesse cavity F = 600, $\kappa = 3~\text{MHz}$
 - → easier to fabricate → extraction efficiency $\eta_{cav} = 90 \%$
 - \rightarrow cooperativity $C \gg 1$
- With a large volume → optical access for atom trapping/cooling
- Easier and reproductible collective atom cavity coupling of g = 10 MHz
- Cloud size $\sigma = 5 \ \mu m < R_b$
- Moderate density

Experimental platform

• Conditional π phase shift:

Julien Vaneecloo, Sébastien Garcia, and Alexei Ourjoumtsev Phys. Rev. X 12, 021034 – Published 11 May 2022

Deterministic generation of single photon

Superatom state $\cos\left(\frac{\theta}{2}\right)|G\rangle - \sin\left(\frac{\theta}{2}\right)|R\rangle$

Magro, Vaneecloo, Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023)

Deterministic generation of single photon

Superatom state
$$\cos\left(\frac{\theta}{2}\right)|G\rangle - \sin\left(\frac{\theta}{2}\right)|R\rangle \Rightarrow$$
 Photonic state $\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$
 \downarrow
 $|D\rangle = \cos(\beta)|G,1\rangle - \sin(\beta)|R,0\rangle \tan(\beta) = \frac{2g}{\Omega(t)}$

Magro, Vaneecloo, Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023)

- Detail of efficiencies contributions:
 - $p_1 = 60 \pm 3$ % at $\theta = \pi$
 - $\eta = \eta_C \eta_{cav} \eta_{exc} \eta_s = 62$ % at $\theta = \pi$
 - $\eta_C = \frac{2C}{1+2C} = 93\%$, mapping efficiency
 - $\eta_{cav} = 90$ %, extraction efficiency
 - $\eta_{exc} = 77 \ \%$, excitation efficiency
 - $\eta_s = e^{-(t_s/\tau_s)^2} = 95 \%$, with $\tau_s = 2 \ \mu s$, $t_s = 0,48 \ \mu s$

Magro, Vaneecloo, Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023)

- Intensity autocorrelation measurement:
 - $g_2(0) = 0.027 \pm 0.002$
 - $p_2 = 0.49 \pm 0.05 \%$

Homodyne tomography

$$t = \int \sqrt{\frac{I(t)}{\int I(t')dt'}} a_{out}(t) dt$$

Magro, Vaneecloo, Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023) ¹⁵

Homodyne tomography

Quadrature distribution: $P\left(\hat{X}(\phi)\right) = P\left(\frac{\hat{a} e^{i\phi} + \hat{a}^{\dagger}e^{-i\phi}}{\sqrt{2}}\right)$

Magro , Vaneecloo , Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023)

Field quadratures

Maximum squeezing of 4.4%

Pure dephasing $\gamma_{\perp} = 40 \ kHz$

An alternative way for Ramsey spectroscopy

Magro, Vaneecloo, Garcia et Ourjoumtsev. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. (2023) ¹⁷

Perspectives

- Excite superatom more efficiently
- Two superatoms inside the cavity
 - CC-phase gate
 - Multi photons state
- Spatial cavity multimodes experiments
 - Quantum fluids of light (J.Simon, Chicago)

Photonic team

jeipcdf.cnrs.fr/ quantum-photonics/

Alexei Ourjoumtsev, Pl

Julien Vaneecloo, Pasqual Sébastien Garcia, CNRS

Thanks for your attention !

