Ten quectonewton local force sensor with atom interferometry for probing atom-surface interactions

Yann Balland, Luc Absil, Franck Pereira

SYRTE, Observatoire de Paris

Congrès général de la SFP, 6 juillet 2023

Yann Balland (SYRTE, Observatoire de Paris)

Ten quectonewton local force sensor

Probing atom-surface interactions : Casimir-Polder force

Casimir force

Probing atom-surface interactions : Casimir-Polder force

Casimir-Polder force

QED effect :

 $d \left[\mu m \right]$

10

Probing atom-surface interactions : Casimir-Polder force

Objective : Metrological measurement of F_{CP} with controlled d

- Check QED predictions
- Observation of the thermal regime (for $d > 8 \,\mu\text{m}$, $F_{CP} \propto d^{-4}$)
- Additional interaction in μm range ?

Yann Balland (SYRTE, Observatoire de Paris)

Ten quectonewton local force sensor

Rb atoms trapped in optical vertical lattice

 $U\approx 4E_r$

Rb atoms trapped in optical vertical lattice

Rb atoms trapped in optical vertical lattice

$$\begin{split} |F = 2, m = n \rangle \\ \hline \\ h(\nu_{HFS} + n \nu_B) \\ |F = 1, m = 0 \rangle \end{split}$$

Ramsey interferometer :

Ramsey interferometer :

$$\frac{\pi}{2}$$
 $T \sim 150 \,\mathrm{ms}$ $\frac{\pi}{2}$

$$\begin{split} |F = 2, m = n \rangle \\ \hline \\ h(\nu_{HFS} + n \nu_B) \\ |F = 1, m = 0 \rangle \end{split}$$

Fluorescence imaging : transition

probability
$$P_e = \frac{N_{|F=2
angle}}{N_{|F=2
angle} + N_{|F=1
angle}}$$

4/16

Ramsey interferometer :

$$\frac{\pi}{2}$$
 $T \sim 150 \,\mathrm{ms}$ $\frac{\pi}{2}$

$$|F = 2, m = n\rangle$$

$$h(\nu_{HFS} + n \nu_B)$$

$$|F = 1, m = 0\rangle$$

Fluorescence imaging : transition

probability
$$\begin{split} P_e &= \frac{N_{|F=2\rangle}}{N_{|F=2\rangle} + N_{|F=1\rangle}} \\ &= \frac{C}{2}\cos(\varphi) \end{split}$$

Interferometric phase :

$$\begin{split} \varphi &= 2\pi (\nu_R - \nu_{HFS} - n \; \nu_B) T \\ F &= \nu_B \frac{2h}{\lambda_l} = \nu_B \times 2.49 \times 10^{-27} \, \mathrm{N/Hz} \end{split}$$

Transition n = -6

Force sensitivity

Sensitive to Casimir-Polder to distance up to 8 µm

Yann Balland (SYRTE, Observatoire de Paris)

Ten quectonewton local force sensor

Evaporative cooling in dipolar trap : $150\,000$ atoms at $500\,{\rm nK},\,\sigma_z\sim 10\,{\rm \mu m}$ Adiabatic compression $\implies\sigma_z\sim 4\,{\rm \mu m}$

Evaporative cooling in dipolar trap : $150\,000$ atoms at $500\,{\rm nK},\,\sigma_z\sim 10\,{\rm \mu m}$ Adiabatic compression $\implies\sigma_z\sim 4\,{\rm \mu m}$

n Transport the atoms close to the mirror

Evaporative cooling in dipolar trap : $150\,000$ atoms at $500\,{\rm nK},\sigma_z\sim 10\,{\rm \mu m}$ Adiabatic compression $\implies\sigma_z\sim 4\,{\rm \mu m}$

Transport the atoms close to the mirror

Using a moving lattice $v(t) = \frac{\Delta \omega(t)}{2k}$ $z = \int v(t) dt \implies$ Precise control on the transport distance

Evaporative cooling in dipolar trap : $150\,000$ atoms at $500\,{\rm nK},\,\sigma_z\sim 10\,{\rm \mu m}$ Adiabatic compression $\implies\sigma_z\sim 4\,{\rm \mu m}$

Transport the atoms close to the mirror

Using a moving lattice $v(t) = \frac{\Delta \omega(t)}{2k}$ $z = \int v(t) dt \implies$ Precise control on the transport distance

 $10\,000$ atoms at the end of the transport, with heavy spontaneous emission (heating, unpolarization)

////////

Use mirror surface as position reference

Quectonewton force sensor with micrometer spatial sensitivity

Yann Balland (SYRTE, Observatoire de Paris)

Ten quectonewton local force sensor

 $\times 10^{-27}$

 $\times 10^{-27}$ 0 Force difference to gravity [N] 5.0-5.0-5.0-Casimir-Polder force [A. Maury, 2016] Casimir-Polder averaged -2 0 20 40 60 80 100 120 Distance to mirror [µm]

 $\times 10^{-27}$

Differential force measurement, relative to 400 µm away from the mirror surface

Measured force : same order of magnitude than expected Casimir-Polder force

Additional force, on longer range

Parasitic force from adsorbed atoms

[Cornell, 2004] : « Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose-Einstein condensates »

- Atoms adsorbed on the mirror : electric dipole *µ*
- Energy shift on the neutral atoms $U_E = -\frac{\alpha_{DC}}{2} |\vec{E}|^2$ Force $\vec{F} = \frac{\alpha_{DC}}{2} \ \overline{\text{grad}} \ |\vec{E}|^2$ $F_s(z) = \alpha_{DC} E_s(z) \frac{\partial E_s}{\partial z}$

N atoms adsorbed on the surface, over a radius σ_m :

 $\begin{array}{l} \mbox{Dipolar electric field fit} \\ \mbox{parameters}: \\ N_{\mu} = 2 \times 10^{10} \mbox{ atoms,} \\ \sigma_m = 88 \mbox{\, \mum} \sim 2\sigma_x \end{array}$

 $\begin{array}{l} \mbox{Dipolar electric field fit} \\ \mbox{parameters}: \\ N_{\mu} = 2 \times 10^{10} \mbox{ atoms,} \\ \sigma_m = 88 \mbox{\, \mum} \sim 2\sigma_x \end{array}$

Suppression of parasitic eletrostatic force : UV shinning

Attempt of desorption of atoms: UV shinning on the mirror

Suppression of parasitic eletrostatic force : UV shinning

Attempt of desorption of atoms: UV shinning on the mirror $\times 10^{-27}$

Apply controlled external electric field

Apply controlled external electric field

Apply controlled external electric field

$$F_s(z) = \alpha_{DC} \frac{\partial E_s}{\partial z} E_s(z)$$

Apply controlled external electric field

$$F_s(z) = \alpha_{DC} \frac{\partial E_s}{\partial z} E_s(z)$$

 $\begin{array}{l} \text{Uniform external electric field} \\ E_e \implies \text{force shift} \end{array}$

$$F(E_e) = \alpha_{DC}(E_e + E_s) \frac{\partial E_s}{\partial z}$$

Apply controlled external electric field

$$F_s(z) = \alpha_{DC} \frac{\partial E_s}{\partial z} E_s(z)$$

Electric gradient $\frac{\partial E_s}{\partial z}$

$$F(E_e) = \alpha_{DC}(E_e + E_s) \frac{\partial E_s}{\partial z}$$

Electric field $E_s(z)$ [Lodewyck, 2012] $\Delta \omega_{HFS} = k_s |\vec{E}|^2$

$$\Delta \omega_{HFS}(E_e) = k_s (E_e + E_s)^2$$

Clock measurement : MW Ramsey interferometer

$$\Delta \omega_{HFS} = 10 \, \mathrm{mHz} \Longleftrightarrow E_e = 600 \, \mathrm{V}$$

Measurements of electric fields

Force and parasitic force

$$F_s(z) = \alpha_{DC} E_s(z) \frac{\partial E_s}{\partial z}$$

Yann Balland (SYRTE, Observatoire de Paris)

Force and parasitic force

$$F_s(z) = \alpha_{DC} E_s(z) \frac{\partial E_s}{\partial z}$$

No recovering of only Casimir-Polder force

- electric fields in other directions ?
- non linearities in applied electric field?

Conclusion

- $\bullet\,$ Local force sensor, with a μm spatial resolution, up to a few qN
- We measure Casimir-Polder force, masked by others surface-atom interactions of same magnitude
- Able to characterise electric field near the surface

Conclusion

- Local force sensor, with a μm spatial resolution, up to a few qN
- We measure Casimir-Polder force, masked by others surface-atom interactions of same magnitude
- Able to characterise electric field near the surface

Perspectives:

- Better sensitivity : more atoms, smaller cloud, better coherence time
- Pursue better electric field characterization
- Measurement selective in position
- Measure temperature effect
- New surface test (metamaterials)

15/16

Thank you for your attention !

Force shift from IR beam

Force inhomogeneities

