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Measurements of Quantum correlations, and 
characterization of quantum thermalization, in a 
dipolar interacting spin system



Chromium atoms loaded in a deep 3D lattice: a spin system driven by dipolar interactions

A platform to study an original quantum magnetism

Finite size effects

Presence of holes(?)

Real spins

Spins directly coupled by long range interactions

Large s=3 spins (6 electrons)
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Dipolar relaxation
10 ms

1

Not a perfect spin system

Atoms loaded in a deep
3D optical lattice→ Mott state

Lossy system

time (ms)

atom
number



1- Excite the spins

3- Measurement of Spin populations

2- Free evolution under the effect of interactions 

Principle of or out of equilibrium spin dynamics experiments

Initial preparation: 
3 , 3 ,...., 3 , 3z z z zinitial     

Spin =3 for chromium

 3,3,....,3,3)0(  t

Stern Gerlach separation

BEC in absolute ground state ms=-3 loading in a 3D lattice

Fluorescence imaging

Use of Radio Frequency: induce spin rotations
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fRF= fLarmor = g µB B

4- Measure collective quantities – Derive something interesting

Alternative: 4- Local measurements (quantum microscope, M. Greiner, W. Bakr)



Out of equilibrium spin dynamics experiments: summary of our previous results

All these experimental features are in agreement with a quantum thermalization scenario: the isolated spin system evolves towards an 
asymptotic state where local quantities acquire a thermal character while the entire system remains pure and get entangled

 3,3,....,3,3)0(  t
θ

Jz
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Lepoutre et al,  NatCom 2019
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Spin populations dynamics well reproduced
by quantum simulations (GDTWA)
and not by mean field simulations

Asymptotic populations in agreement with 
a scenario of Quantum Thermalization

Gabardos et al,  PRL 2020

Dynamics of the Collective spin length
Compatible with a dipolar evolution
(but slower)
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New characterization of the thermalization process:  measuring directly the growth of correlations

We can measure a correlation witness for large spin systems
from collective measurements
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Repeat the experiment= acquire statistics
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assuming homogeneity

33  sm

1 ,population lfractionna  
s

ss

m
mm pp




s

s

m
smzz mpJ

N
C 22

2

norm 
ˆ1



 
2

3ˆ1 2  zJ
N

 2
s

s

m
sm mp

homogeneous spin system

zĴ= Variance of 

= Sum of individual variances
grows as dynamics proceeds

expected constant for a pure dipolar dynamics



Measuring spin fluctuations at the level of the quantum noise: a difficult task!

Our best values for magnetization fluctuations at t=0
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SQN2exp  zJ

if  d =3×10-3 rdSQNnpreparatio  zJ

kHz 100Rabi f

/2 RF pulse

6-8 Larmor periods

Large spins
more sensitive
to technical noise!
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SQNexp  zJ because:

* Spin preparation is not perfect:

2

 

d

* Atom counting is not perfect:
limited signal to noise ratio→ fit noise

* Detection noise = Shot noise
Poisson statistics of light

2 SS G 
G = gain of EMCCD camera 

S = signal 
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, we measure it



Spin Correlations build up during dynamics: experimental results

Proof of the growth of correlations is demonstrated The measured correlations are compatible
with expected quantum correlations
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3.0

characteristic correlation length
associated with the dynamical
onset of correlations in the system

lattice units



Demonstrating spin correlations from bipartition measurements
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Spin fluctuations of sub ensembles
get larger because they get anticorrelated

0      
4

3
      

4

3
      

2

3
 NNN

at t =0

SQN

SQN

SQN CorrelationsNo correlations

B

zzzzz JJJJJ BA

2

B

2

A

2

tot
ˆˆ,ˆ,ˆ,ˆ

SQN

for t >0

constant

1,
2

3
  )-(1   

4

3
      

4

3
     

2

3
 xNxNxN xN

zJA
ˆ

zJB
ˆ

Can change as spin
dynamics proceed
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ˆ
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1- Realize a bipartition

2- Measure fluctuations



Realization of Bipartition : our strategy

Idea: create a
Bichromatic lattice after spin dynamics

A A A A

B B B

A A A A

B B B

• Une bipartition adaptée à l’anisotropie des interactions
• Une bipartition adaptée à la courte portée des interactions
• Une bipartition créant de larges zones de contact entre les deux 

sous ensembles A et B (area law)

Simple for BEC

More adapted for lattice systems



Bipartition : experimental realization

10

Potentiel dipolaire horizontal
532 nm

Cinq faisceaux à 532 nm nous permettent de créer 
le réseau 3D primitif de l’expérience

V

H2

H1
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A
B

A
B

A
B

A

Potentiel dipolaire horizontal
bichromatique

Axe de bipartition

V

1064 nm

H2

H1
𝜋

4

The 1064 nm laser creates a superlattice

Bipartition : experimental realization



Bipartition scheme

I Spin dynamics

II 1604 nm laser added

III 532 nm laser off

IV T/4 evolution in the 
1064 nm lattice

V Separation after
time of flight



On the importance of the intensity pattern during the bipartition process

Φ Φ

𝐴 𝐴 𝐴
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Bipartite measurements: experimental realization

0 ms 15 ms



Bipartite correlation witnesses

15

A

B
𝐶 = �̂� �̂� − �̂� 〈�̂� 〉 = Var 𝑆 − Σ

𝐶 = �̂� �̂� − �̂� 〈�̂� 〉

 

∈
∈  

=
𝐶 − 𝐶 − 𝐶

2

𝐶 = �̂� �̂� − �̂� 〈�̂� 〉 = Var 𝑆 − Σ

𝐶 = cov(𝑆 , 𝑆 )

Corrélations intra-famille A

Corrélations inter-famille AB

Corrélations intra-famille B



Bipartite measurements: results

Expected thermalized value

Numerical simulations

𝐶 <0
Var𝑆 ,

Subpartite fluctuationsEntire system Subpartite correlations

𝐶 , 𝐶 >0



Conclusion

We study experimentally and theoretically the growth of spin correlations in a dipolar spin dynamics 
which leads to quantum thermalization

From collective measurement we measure spin correlations 
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From bipartition measurement we measure 
fluctuations and correlations of subsystems

Negative correlations develop

Development of new theoretical tools necessary

Var𝑆 ,

Anisotropy of the system is revealed by subpartite correlations 

Subsystem fluctuations grow

𝐶 <0 𝐶 , 𝐶 >0

Two point correlators are difficult to evaluate

𝐶 = 𝐶 =𝐶
Isotropic system

0 zC



Spin population dynamics: experimental results and numerical simulations

Lines: numerical simulations
Symbols: experimental results
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Dipolar spin dynamics gives rise to measureable correlations for large spins j>1/2

As soon as spin dynamics proceeds,
correlations grow

norm zC

numerical simulations = semi classical = GDTWA
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Measuring spin fluctuations at the level of the quantum noise: our approach
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We use the data at t=0 to infer the preparation noise; then we obtain the spin noise for t>0
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data analysis 

measured (N) inferredderived from
first principles

→ the spin noise = atomic contribution is equal to the SQN for t=0
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Use of a bicolor lattice to isolate two families of spins

Requires achieving a good spatial separation
between the two spin families

A Frequency difference between the two lasers create this intensity profile

Bipartite measurements: experimental realization

=

→ very favorable to detect
Local correlations
Dipolar interactions

lIR=2 lGreen

Double-well lattice
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We can compensate
for frequency drift
by use of an AOM
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cm 50mirrors reflectionback  -atoms distance L

A AB B



galery


