Michele Filippone

UG Université Grenoble Alpes

Theory S. Greschner, **MF**, T. Giamarchi **PRL** (2019) **MF**, C.-E. Bardyn, S. Greschner, T. Giamarchi **PRL** (2019) arXiv:2205.13567 to appear in **SCIENCE**

Observation of the Universal Hall Response of Strongly Interacting Fermions

EXPERIMENTAL TEAM

Daniele Tusi Lorenzo Franchi Jacopo Parravicini Leonardo Fallani

UNIVERSITÀ DEGLI STUDI FIRENZE

THEORY

Thierry Giamarchi

UNIVERSITÉ

DE GENÈVE

Quantum simulation of a Hall experiment

STATE

C

First observation of universal many-body effects

Quantum simulation with ultracold atoms

Bosons weakly interacting

Bosons (again)

few-body correlations

Imaging topology of Hofstadter ribbons

Dina Genkina¹, Lauren M Aycock¹, Hsin-I Lu^{1,2}, Mingwu Lu¹, Alina M Pineiro¹ and I B Spielman¹

(2019)

Fabian Grusdt¹ Adam M. Kaufman¹ & Markus Greiner

nature physics

doi:10.1038/nature2281

Probing chiral edge dynamics and bulk topology of a synthetic Hall system

Thomas Chalopin⊜^{1,3}, Tanish Satoor^{1,3}, Alexandre Evrard', Vasiliy Makhalov^{1,2}, Jean Dalibard', Raphael Lopes ^{⊜1} and Sylvain Nascimbene^{©1⊠}

Real-space detection and manipulation of topological edge modes with ultracold atoms

Christoph Braun^{1,2,3}, * Raphaël Saint-Jalm^{1,2,3}, * Alexander Hesse^{1,2,3}, Johannes Arceri^{1,2,3}, Immanuel Bloch^{1,2,3}, Monika Aidelsburger^{1,2,†}

Realization of a fractional quantum Hall state with ultracold atoms

Julian Léonard,¹,^{*} Sooshin Kim,¹ Joyce Kwan,¹ Perrin Segura,¹ Fabian Grusdt,^{2,3} Cécile Repellin,⁴ Nathan Goldman,⁵ and Markus Greiner¹

LETTER

Microscopy of the interacting Harper–Hofstadter model in the two–body limit M. Bric'al', Alexander Lakin', Matthew Rispolit', Robert Schittko', Tim Menke', Dan Borgnia', Philipp M. Preiss¹,

Simulating quantum Hall effects on a superconducting quantum processor

Zhong-Cheng Xiang,^{1, *} Kaixuan Huang,^{1, 6, 5, *} Yu-Ran Zhang,^{2, 3, *} Tao Liu,⁴ Yun-Hao Shi,¹ Cheng-Lin Deng,¹ Tong Liu,¹ Hao Li,¹ Gui-Han Liang,¹ Zheng-Yang Mei,¹ Haifeng Yu,⁵ Guangming Xue,⁵ Ye Tian,¹ Xiaohui Song,¹ Zhi-Bo Liu,⁶ Kai Xu,^{1, 5, 7, 8, †} Dongning Zheng,^{1, 7, 8} Franco Nori,^{2, 3, 9, ‡} and Heng Fan^{1, 5, 7, 8, §} arXiv:2207.11797v1

Quantum simulation of <u>many-body</u> effects with fermions

Probing the Hall response of a 2-leg fermion ladder

MF, C.-E. Bardyn, S. Greschner, T. Giamarchi PRL (2019)

Synthesizing artificial gauge fields with ¹⁷³Yb (fermions)

nature physics

LETTERS PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NPHYS2878

A one-dimensional liquid of fermions with (2014) tunable spin

Guido Pagano^{1,2}, Marco Mancini^{1,3}, Giacomo Cappellini¹, Pietro Lombardi^{1,3}, Florian Schäfer¹, Hui Hu⁴, Xia-Ji Liu⁴, Jacopo Catani^{1,5}, Carlo Sias^{1,5}, Massimo Inguscio^{1,3,5} and Leonardo Fallani^{1,3,5 *} Stern-Gerlach measurement of the spin

Jaksch and Zoller New J. Phys. (2003), Celi et al. PRL (2014)

380

attice

Raman

1D atomic gas

Raman

 $B_0 \mathbf{e}$

how it looks like

gas is here

After-guench real time evolution 0.25

Transverse tunneling – t_y – dependence

 $U = 6.56t_{r}$

Universality driven by interactions

$$t_y = 1.15t_x$$

Universality driven by interactions

Hard-to-compute regime where U, T and t_y are all of the same order

$$t_y = 1.15t_x$$

Editors' Suggestion

Universal Hall Response in Interacting Quantum Systems

Sebastian Greschner, Michele Filippone, and Thierry Giamarchi Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland

see also MF, C.-E. Bardyn, S. Greschner, T. Giamarchi PRL (2019)

Perspective : voltage measurements

Buser, Greschner, Schollwöck Giamarchi PRL (2021)

Preliminary : voltage measurements

Conclusions

First observation of universal many-body effects on the Hall response of a controlled quantum simulator

The Hall effect : classics

From measuring the carrier density in metals...

Forces at work

Hall resistance

Hall constant

 $F_{\text{Lorentz}} = J_x B$ $F_{\text{Electric}} = nq E_y$ stationary condition $F_{\text{Electric}} + F_{\text{Lorentz}} = 0$

$$\rho_{\rm H} = \rho_{xy} = \frac{E_y}{J_x} = -\frac{B}{nq}$$

$$R_{\rm H} = \frac{\rho_{\rm H}}{B} = -\frac{1}{nq}$$

E. H. Hall, American Journal of Mathematics 2, 287 (1879)

The Hall effect : classics

... to strongly correlated topological effects

Eisenstein and Stormer Science (1990)

Transverse tunneling – t_y – dependence

A strongly correlated stabilization of a single-band metal

and the limits of a mean-field analysis

S. Greschner, **MF**, T. Giamarchi PRL (2019) **MF**, C.-E. Bardyn, S. Greschner, T. Giamarchi PRL (2019)

PROBLEM : The mean-field analysis predicts the <u>unobserved</u> suppression of $\Delta_{
m H}\propto rac{1}{ ilde{t}}$

A strongly correlated stabilization of a single-band metal

and the limits of a mean-field analysis

S. Greschner, **MF**, T. Giamarchi PRL (2019) **MF**, C.-E. Bardyn, S. Greschner, T. Giamarchi PRL (2019)

U > 0U = 0two-bands metal Single Band Metal SU(2) symmetry of interactions $U \sum n_{j,0} n_{j,1} = U \sum n_{j,+} n_{j,-}$ U EF 6 quasi - momentum k $\Delta_{\rm H} = 2\frac{t_x}{\prime} \left| \tan \left(\right. \right. \right|$ **'ERSALITY WITH RESPECT TO INT**

Dynamical difference between DMRG and Mean-Field

Perspective : voltage measurements

Buser, Greschner, Schollwöck Giamarchi PRL (2021)

Preliminary : voltage measurements

Tube occupation distribution

Transition for different densities at T=O

