

Laboratoire Collisions Agrégats Réactivité

Optimal control of Bose-Einstein Condensates in an optical lattice

<u>B. Peaudecerf¹, N. Dupont¹, F. Arrouas¹, G. Chatelain¹, L. Gabardos¹, N. Ombredane¹, M. Arnal¹, J. Billy¹, D. Sugny² and D. Guéry-Odelin¹</u>

Quantum optimal control is a framework under which the controlled dynamics of a quantum system can be made to satisfy a number of constraints. It is a promising direction for quantum simulation – for state and dynamics engineering, or for characterization or sensing of quantum systems [1]. We perform optimal control of the quantum state of a Bose-Einstein condensate of ⁸⁷Rb atoms in a one-dimensional optical lattice. We prepare a broad range of quantum state that we fully characterize. This enables further use of optimal control for quantum simulation and sensing with cold atoms on a lattice.

Experimental system

Bose-Einstein Condensate in a modulated 1D optical lattice

$$\mathcal{H}(x,p,t) = \frac{p^2}{2m} + V(x,t) = \frac{p^2}{2m} - \frac{s E_L}{2} \cos(k_L x + \varphi(t)) \qquad k_L = \frac{2\pi}{d}, \ E_L = \frac{\hbar^2 k_L^2}{2m}$$

¹Laboratoire Collisions Agrégats Réactivité, UMR5589, Université Toulouse III/CNRS, Toulouse, France ²Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, Université de Bourgogne/CNRS, Dijon, France

Quantum optimal control (QOC) –

Goal : find the control field $\varphi(t)$ maximising the fidelity F to a target $|\Psi_T\rangle$

 $F = |\langle \Psi(\mathbf{t}_{oc}) | \Psi_T \rangle|^2$

Schrödinger equation : $i\hbar |\dot{\Psi}\rangle = \mathcal{H}(\boldsymbol{\varphi}(\boldsymbol{t}))|\Psi\rangle$

 $H_{[\hat{\rho}]}(x_0, p_0) = \frac{1}{2\pi} \langle g(x_0, p_0) | \hat{\rho} | g(x_0, p_0) \rangle$

Discretization of the field :

 φ : piecewise constant φ_i over N time steps Δt

e.g. create all 128 equal-weights superpositions of 7 central orders

 $H_{[g(0,0)\rangle]}$

 $|g(0,0)\rangle \simeq$

ground

state

Prepare and reconstruct squeezed states Lattice cell Gaussian states with $\Delta x = \xi \Delta x_{\text{ground}}$ Squeezing ξ at depth s equivalent to ground state at depth $s_{\rm eff} = s/\xi^4$ $s = 5.62 \pm 0.25$ $s_{eff} = 2000$ -π/2 0 π/2 -π/2 0 π/2 -π/2 0 π/2 -π/2 0 π/2 k_ix $1/\xi = 0.44$ $1/\xi = 0.62$ $1/\xi = 1.65$ $1/\xi = 2.75$ $1/\xi = 4.34$ **Reach non trivial states** F = 0.75F = 0.96F = 0.98F = 0.93faster than adiabatic protocol $\gamma = 0.72$ $\gamma = 0.92$ $\gamma = 1$ $\gamma = 1$ Purity $\gamma = \operatorname{tr}(\widehat{\rho}_{ML}^2)$ Fidelity $F = \langle \Psi_T | \widehat{oldsymbol{
ho}}_{ML} | \Psi_T
angle$ $t_{OC} < 2T_0, T_0 \sim \text{trap period}$ Outlook "loading the island" is key (initial state)

Enhancement of dynamical tunneling signal

Amplitude-modulated lattice

-4

