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AlGaAs strong 𝜒(2) can be 

exploited to generate photon pairs 

via spontaneous parametric down 

conversion (SPDC)

Design & Working Principles

Conversion efficiency:
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Lock-in amplified second harmonic generation (SHG)

Design validation, fine tuning of parameters

Pair generation rate (PGR) 

measurement

Performances

Fibered Franson interferometer 

in the folded configuration
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▪ Δ𝑇 ≫ 𝜏𝑐 → No single-photon

interference

▪ Δ𝑇 ≫ 𝜏𝑗𝑖𝑡 → Separate case (i) from

(ii) and (iii)

▪ Δ𝑇 ≪ 𝜏𝑝 → To have two-photon

interference

▪ Thermal stability to avoid thermal

phase drifts

Fibers’ chromatic dispersion introduces 

distinguishability between the two paths, affecting 

the entanglement visibility:

Fully entangled state, 

quantum superpostion
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The phase (so the interference profile) is controlled by a piezoelectric fiber stretcher; the visibility is 

determined by the entanglement quality: if >50%, indirect demonstration of energy-time entanglement.

With spectral filtering, we demonstrated visibilities up to 99% for both type 0 and 2 PM photon pairs
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Integrated quantum photonics goal: on-chip generation, 

manipulation, distribution and detection of qubits

Integrating different platforms to leverage the 
complementary assets

SOI AlGaAs

Leader in complex 

linear integrated 

optical components; 

CMOS compatibility

Lack of second 

order nonlinearity; 

indirect bandgap

Incompatibility with 

CMOS; complex 

components still 

under development

High second order 

nonlinearity; direct 

bandgap

Hybrid AlGaAs/SOI photon-pair source

Perspectives

▪ Integrated hybrid electrically driven photon-

pair source

▪ Quantum metrology with phase-stabilized 

Franson interferometer

▪ On-chip implementation of QKD protocol 

based on energy-time entanglement
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Challenges

▪ SOI/AlGaAs wafer bonding, solving the 

constraints deriving from the lattice 

mismatch; GaAs substrate removal, 

waveguide patterning and alignment 

between the two platforms

▪ Efficient, wide-band, polarisation 

insensitive, fabrication friendly, robust and 

low footprint optical mode coupling design, 

compatible with existing SOI stacks and 

industry standards

▪ Conservation of the produced bi-photon 

state properties (JSI, entanglement 

visibility, degree of indistinguishability) from 

one photonic circuit to the other 
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