Measurement and control of the Hamiltonian of quantum computers
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If the Hamiltonian of a quantum computer can be engineered into another one, measuring the state of the qubits will give information on the Hamiltonian of interest. Being on a
lattice, qubits can be used to mimic condensed matter problems [1|. The two requirements for analogue quantum simulation are the Hamiltonian learning problem, ie the Hamiltonian
Tomography, and the control of the interactions between the qubits |2|. The Hamiltonian learning problem is also relevant in quantum computing to characterize the unwanted

dynamics that are responsible for the quantum gates errors.

Hamiltonian Tomography a

Knowing the interaction graph of a quantum computer, the Hamiltonian can be expanded
into only one-body and two-body Pauli operators. Then a relation between observables
and the Hamiltonian coefficients can be found |3]
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Gathering all the equations for many initial states p and all the possibles correlations O, a
system can be build, with D a column vector of the derivatives of the correlations, which
is something accessible experimentally, M a matrix of algebraic coeflicients, that can be
easily calculated numerically, and I' is a column vector of the Hamiltonian coefficients.
Solving this system will fully characterize the Hamiltonian of the qubit site (ig, 29 + 1).
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Efficient correlations measurement B

For a N qubit system, by applying N random local unitaries U, measurements can be

paralleled to estimate correlations (O) efficiently. By instance, for the random sequence
XZYXZXYY X on qubit 1 to 9, (Y3XgXg) can be estimated, as well as (X1 25).
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Pauli Observables

The randomised measurements toolbox: "Measure first, ask questions later” [6]
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Conclusions and outlook

The drives

1. N-qubit Hamiltonians with two-body interactions of any quantum system can be
characterised if the derivatives at ¢t = 0 of the correlations are accessible experimen-
tally.

2. Perform analogue quantum simulation and study the entanglement growth by mea-
suring Rényi entropies [6].

3. The method can be extended to open quantum systems by deriving the Lindblad
master equation |3].
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Generating a cross-resonance (CR) interaction .

In transmon qubits, the CR technique is used to create entanglement between qubits [4].
By sending a microwave at frequency fi on qq, go will not absorb the excitation because
of the detunning, rather, the latter will be transferred to the neighbor ¢;, which is at f.
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Results from ibmq quito b

Via the ibmq quantum computing platform |5| quantum circuits can be run and tested on
real devices, such as ibmq quito.

Name: circuit-91, Duration: 5454.2 ns, Backend: ibmg_quito
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A CR micro-wave was send for many initials states, and all the Pauli operators measured.
From the data, derivatives were estimated and the system of equation of the Hamilto-
nian Tomography technique was solved to determine the Hamiltonian. The Hamiltonian
characterisation of the CR micro-wave was done for many amplitudes.
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