

Carbon nanotube mechanical mass sensor with single molecule resolution at room temperature

Clarisse BASSET^{1*},

Huy-Nam TRAN¹, Rudy DESGARCEAUX¹, Benjamin LECARLATE-FERNANDEZ¹, Romain LHERMEROUT², François HENN¹, Adrien NOURY¹

¹ Laboratoire Charles Coulomb, Université de Montpellier, Montpellier, France ² Laboratoire Interdisciplinaire de Physique, Univ. Grenoble Alpes, CNRS, Grenoble, France

* Email: clarisse.basset@umontpellier.fr

Motivation: why resonators?

• They are everywhere!

Surface acoustic wave detector (smartphone)

- Many applications, such as:
 - Sensing/metrology (including gravity waves)
 - Frequency conversion
 - Quantum test
 - Etc.

Interest of nanoscale resonators

• Shriking device dimensions reduces the mass: better sensitivity, higher zero-point fluctuations $z = \frac{\hbar}{2}$

$$Z_{zpf} = \sqrt{\frac{h}{2 \cdot m_{eff} \cdot \omega_m}}$$

Interest of nanoscale resonators

• Shriking device dimensions reduces the mass: better sensitivity, higher zero-point fluctuations $7 - \frac{\hbar}{2}$

$$Z_{zpf} = \sqrt{\frac{\hbar}{2 \cdot m_{eff} \cdot \omega_m}}$$

• Crystalline resonators suffers from surface defects

Solution: bottom-up materials

Carbon based resonators

• Graphene and nanotubes

> Nearly perfect structures, strong sp² bonds (high Young modulus)

Recent progress in detection scheme has allowed to detect their motion (<z> ~ pm range), now technologically mature

Why SWCNTs as mechanical resonators?

• Eigen frequency defines frequency of a resonator:

$$\omega_0 = 2\pi f_0 = \sqrt{\frac{k_0}{m_0}}$$

Mass responsivity (= GAIN)

0

• Mass sensing and mass responsivity:

• The interest of nanoresonators => low mass: $1.7 \times 10^{-24}g = 1.7$ yoctogram

Resonators

 $\delta m = \frac{2 \cdot meff}{f_0} \cdot \delta f$

 $\delta f = \frac{f_0}{2 \cdot meff} \cdot \delta m$

Measured signals

Mechanical spectra

Measured signals

Measured signals

J. Chastes et al. (2012). A nanomechanical mass sensor with yoctogram resolution, Nat. Nano, 7, 5, 301-304.

Open-loop vs Close-loop sensitivity

Open-loop

Recorded phase (free evolution)

Context	Resonators	Experim	nental setup		Results	Conc
Open-le	оор		Allan deviat	ion $\sigma_y(au)$	$) = \sqrt{\frac{1}{2(N-1)}}$	$\frac{1}{\sum_{f=1}^{N} (\frac{\overline{f_{i+1}} - \overline{f_i}}{f})^2}$
Recorded phase	(free evolution)				$\sqrt{\frac{2(N-1)}{N}}$	$\sum_{i=1}^{n} J_0$
-0.1 - -0.2 - (p) -0.3 - -0.4 - -0.5 -		Allan deviation σ	•			
−60 −50 −40 ten	–30 –20 –10 0 nps (s)		10 ⁻³ 10 ⁻²	10 ⁻¹ 10 tau (s)	0 10 ¹ 10 ²	

	Context	Resonators	Experin	nental setup	R	esults	Conclusions
	Open-l	оор		Allan deviation	$\sigma_y(\tau) =$	$\frac{1}{2(N-1)}$	$\sum_{i=1}^{N} (\frac{\overline{f_{i+1}} - \overline{f_i}}{f_0})^2$
	Recorded phase	(free evolution)				۷ 	=1
-0.1 - -0.2 - (pe) -0.3 - id. -0.4 - -0.5 -			Allan deviation o 3×10-3	•	•	•	$\delta m_{lim} = 2m_{eff}\sigma_y(\tau)$
	-60 -50 -40 ter	—30 —20 —10 0 nps (s)		10 ⁻³ 10 ⁻² 1	10 ⁻¹ 10 ⁰ tau (s)	10 ¹ 10 ²	

Sensitivity ~ 10 zg

Close loop-sensitivity

Context	Resonators	Experimental setup	Results	Conclusions	
Reproducibility		Sample reference	Best sensi	Best sensitivity (RT, vacuum)	
		#1 open loop	10 z	g = 10 000 yg	

#1, close loop

#2, run 1

#2, run 2

5 zg = 5 000 yg

270 yg

70 yg

Context	Resonators	Experimental setup	Results	Conclusions
Reproducibility		Sample reference Best sensitivity		tivity (RT, vacuum)
		#1 open loop	10 z	g = 10 000 yg
		#1, close loop	5 z	g = 5 000 yg
		#2, run 1		270 yg
		#2, run 2		70 yg
ass		High mass		

• Current annealing: cleaning the NT surface

Before CA : 550 yg After CA : 270 yg

Main mechanism: particle diffusion Secondary mechanism: adsorption/desorption on random 'traps'

FFT: 1/f (pink) noise. Frequency fluctuations?

Noise sources from the set-up:

05/07/2023

Noise sources from the set-up: DC sources,

Noise sources from the set-up: DC sources, Temperature stability,

Noise sources from the set-up: DC sources, Temperature stability, Brownian noise

05/07/2023

28

Noise sources from the set-up: DC sources, Temperature stability, Brownian noise

Progressively increasing pressure with dry N2

- Momentum kick from gas increase
- \Rightarrow sensitivity decrease

Context	Resonators	Experimental setup	Results	Conclusions

Progressively increasing pressure with dry N2

 \rightarrow Sensitivity, Q and f₀ all stay stable upon progressive increase of the pressure.

Exquisite sensitivity could be preserved up to ambient P?

preserved up to ambient P?

 \rightarrow Sensitivity, Q and f₀ all stay stable upon progressive increase of the pressure.

 \rightarrow Not diffusion limited (vs T)

Exquisite sensitivity could be preserved up to ambient P?

Exquisite sensitivity is preserved up to ambient T!

Context	Resonators	Experimental setup	Results	Conclusions

By moving up and down very strongly, the bonds and contacts at the interface CNT-electrode get changed

= the quality factor Q should degrade

- \Rightarrow Q is linked to the sensitivity
- \Rightarrow If Q impacts σ : inverted parabola

Context	Resonators	Experimental setup	Results	Conclusions

By moving up and down very strongly, the bonds and contacts at the interface CNT-electrode get changed

= the quality factor Q should degrade

- \Rightarrow Q is linked to the sensitivity
- \Rightarrow If Q impacts σ : inverted parabola

 $\Rightarrow \sigma \text{ is not impacted by } Q$ $\Rightarrow \textbf{Fastening point doesn't explain our limitations}$

Context	Resonators	Experimental setup	Results	Conclusion

• Exquisite sensitivity of **70 yg at RT**.

2 orders of magnitude better than literature at RT (Lassagne et al., NL2008)

- **Reproducible**: on a device and on different devices
- Limitations? not thermomechanical, nor the setup.
- Sensitivity is preserved increasing P_{cell}. Might be the same at ambient pressure?