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Motivation: why resonators?

• They are everywhere!

• Many applications, such as:
• Sensing/metrology (including gravity waves)
• Frequency conversion
• Quantum test
• Etc.
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Interest of nanoscale resonators

• Shriking device dimensions reduces the mass: better sensitivity, higher 
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Interest of nanoscale resonators

• Shriking device dimensions reduces the mass: better sensitivity, higher 
zero-point fluctuations

• Crystalline resonators suffers from surface defects

K. L. Ekinci & M. L. Roukes
Rev. Sci. Intrum. 2005

Solution: bottom-up materials
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Carbon based resonators

• Graphene and nanotubes

➢ Nearly perfect structures, strong sp² bonds (high Young modulus)

➢ Recent progress in detection scheme has allowed to detect their 
motion (<z> ~ pm range), now technologically mature
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Why SWCNTs as mechanical resonators?
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• Eigen frequency defines frequency of a resonator:

• Mass sensing and mass responsivity:

• The interest of nanoresonators => low mass: 1.7 × 10−24𝑔 = 1.7 𝑦𝑜𝑐𝑡𝑜𝑔𝑟𝑎𝑚
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Drive

Capacitive coupling : <zNT> ➔ INT



Measured signals

Mechanical spectra
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Measured signals

Mechanical spectra DC gate dependence of the resonance
(electrostatic hardening)
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Measured signals
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Effective sensitivity

J. Chastes et al. (2012). A nanomechanical mass sensor with yoctogram resolution, Nat. Nano, 7, 5, 301-304. 
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Open-loop vs Close-loop sensitivity

Phase detection
φ

Lock-In

Conversion 
φ → fm

PC

Feedback

Drive frequency
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Open-loop

Recorded phase (free evolution)
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Open-loop

Recorded phase (free evolution)
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Sensitivity ~ 10 zg
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Close loop-sensitivity

Sensitivity ~ 5 zg
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Reproducibility
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Sample reference Best sensitivity (RT, vacuum)

#1 open loop 10 zg = 10 000 yg

#1, close loop 5 zg = 5 000 yg

#2, run 1 270 yg

#2, run 2 70 yg
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Reproducibility
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Lassagne et al.
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Our work
Room temperature

70 yg
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What limits the sensitivity?

• Current annealing: cleaning the NT surface

Main mechanism: particle diffusion
Secondary mechanism: adsorption/desorption on random ‘traps’

Before CA : 550 yg
After CA : 270 yg
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What limits the sensitivity?

FFT: 1/f (pink) noise. Frequency fluctuations?

(a
.u

)
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What limits the sensitivity?

Noise sources from the set-up:
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What limits the sensitivity?

Noise sources from the set-up: DC sources, Temperature stability, 
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What limits the sensitivity?

Noise sources from the set-up: DC sources, Temperature stability, Brownian noise
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What limits the sensitivity?

Noise sources from the set-up: DC sources, Temperature stability, Brownian noise
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Contribution of 1‰
+

Contribution of 1%
+

Contribution of 10%

≈ 𝟏𝟏%
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𝜎

𝑃
𝑃𝐶

Progressively increasing pressure with dry N2

Expectation: Q degrades with P

 sensitivity degrades (after a threshold Pc)

Expectations:
- Adsorption/desorption events more 
frequent
 noise increases
 sensitivity degrades

- Momentum kick from gas increase
 sensitivity decrease
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Exquisite sensitivity could be 
preserved up to ambient P?
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Progressively increasing pressure with dry N2
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→ Sensitivity, Q anf f0 all stay stable upon progressive increase of the pressure.



Increasing TCNT
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Progressively increasing pressure with dry N2

32

Expectations:
Particles should diffuse less by increasing 
the temperature

Exquisite sensitivity could be 
preserved up to ambient P?

→ Sensitivity, Q anf f0 all stay stable upon progressive increase of the pressure.



→ Not diffusion limited (vs T)

Increasing TCNT
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Exquisite sensitivity is 
preserved up to ambient T!

Progressively increasing pressure with dry N2
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Exquisite sensitivity could be 
preserved up to ambient P?

→ Sensitivity, Q anf f0 all stay stable upon progressive increase of the pressure.
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By moving up and down very strongly, the bonds and 
contacts at the interface CNT-electrode get changed

= the quality factor Q should degrade

 Q is linked to the sensitivity
 If Q impacts σ : inverted parabola
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σ
[M
H
z]

By moving up and down very strongly, the bonds and 
contacts at the interface CNT-electrode get changed

= the quality factor Q should degrade

 Q is linked to the sensitivity
 If Q impacts σ : inverted parabola

 σ is not impacted by Q
 Fastening point doesn’t explain our 

limitations
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• Exquisite sensitivity of 70 yg at RT.

2 orders of magnitude better than literature at RT (Lassagne et al.,  NL2008)

• Reproducible: on a device and on different devices

• Limitations? not thermomechanical, nor the setup.

• Sensitivity is preserved increasing Pcell. Might be the same at ambient pressure?
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