Resonant states in the surface depletion region of p-GaN observed by low energy photoemission

Mylène Sauty^{1,2}, Jean-Philippe Banon^{1,3}

¹ Laboratoire de Physique de la Matière Condensée, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France ² Now at Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, United Kingdom ³ Now at Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, Palaiseau, France

26^{ème} Congrès Général de la Société Française de Physique - July 4th 2023

M. Sauty

J. Peretti

J. Speck

C. Weisbuch

Nicolas M. S. Lopes, Abdullah Alhassan, Yves Lassailly

Context

Context for the study of nitride ternary alloys

C. Weisbuch, Comptes Rendus Physique, Volume 19, Issue 3 (2018)

 $In_xGa_{1-x}N$

LED, lighting applications

Study of the impact of alloy-disorder \rightarrow Thursday 10:15 MC20.

- Study of band structure of GaN by low energy photoemission.
- Sub-band gap photoemission.
- Observation of resonant states in the surface depletion region.

Low energy photoemission experiment

Experimental setup and basic principles

	1μm	2 μm	200 nm
Sapphire Substrate	GaN UID	n - GaN Si 6×10 ¹⁸ cm⁻³	p - GaN Mg 5×10 ¹⁹ cm ⁻³

Three-step process

- Photon absorption, creation of e-h pair.
- Electron relaxation and transport in the conduction band.
- Electron transmission through the surface.

Sub-bandgap quantum yield

Measuring the quantum yield

Quantum yield = $\frac{\text{number of emitted electrons}}{\text{number of incident photons}}$

M. Sauty et al., Phys. Rev. Lett. 129(21), 216602 (2022)

- Effective mass approximation with interface condition linking the envelope function in the semiconductor to wave function in vacuum.
- Band profile given by classical Poisson equation.
- Relaxation neglected.
- Scattering neglected.
- Recombination neglected.
- Type of initial states: "quasi" Bloch waves, point like states (defect, impurity, surface states, ionized acceptors).

Illustration of the sub-bandgap emission processes

Comparison experiment vs theory

Acceptor concentration 10^{19} cm^{-3} Bandgap $\approx 1.5 \text{ eV}$ Vacuum level $E_{\text{vac}} - E_{\text{F}} = 1.27 \text{ eV}.$ Acceptor concentration 2×10^{20} cm⁻³ Bandgap ≈ 3.4 eV Vacuum level $E_{\rm vac} - E_{\rm F} = 1.5$ eV.

GaAs exp. data from: A. A. Pakhnevich et al. Spin 2004 959-963 / GaN exp. data from: M. Sauty et al., Phys. Rev. Lett. 129(21), 216602 (2022)

Electron energy distribution

Energy distributions of emitted electrons

Energy distributions of emitted electrons

3.0

SFP - Paris - July 4th 2023

Energy above E_F (eV)

3.5

4.0

4.5

0.0

1.5

2.0

2.5

Signatures of resonant states?

What are resonant states?

Resonant states

Consider the Schrödinger equation with varying potential and/or mass

$$-\frac{\hbar^2}{2}\nabla\cdot\left[\frac{\nabla\psi}{m}\right] + V\psi = E\psi$$

J.-P. Banon

SFP - Paris - July 4th 2023

Computed (Local) Density of States

Over-doped p-GaN, $[Mg] \approx 2 \times 10^{20} \text{ cm}^{-3}$.

Signatures of resonant states?

Thank you for your attention.