Resonant states in the surface depletion region of p-GaN observed by low energy photoemission

Mylène Sauty¹,², Jean-Philippe Banon¹,³

¹ Laboratoire de Physique de la Matière Condensée, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
² Now at Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, United Kingdom
³ Now at Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Saclay, Palaiseau, France

26ème Congrès Général de la Société Française de Physique - July 4th 2023
Contributors

M. Sauty
J. Peretti
J. Speck
C. Weisbuch

Nicolas M. S. Lopes, Abdullah Alhassan, Yves Lassailly
Context
Context for the study of nitride ternary alloys

Nitrides = III-N semiconductors
Bandgap engineering

\[\text{LED, lighting applications} \]

\[\text{Study of the impact of alloy-disorder} \rightarrow \text{Thursday 10:15 MC20.} \]
Today’s talk is about GaN (no alloy disorder)

- Study of band structure of GaN by low energy photoemission.
- Sub-band gap photoemission.
- Observation of resonant states in the surface depletion region.
Low energy photoemission experiment
Experimental setup and basic principles

Three-step process

- Photon absorption, creation of e-h pair.
- Electron relaxation and transport in the conduction band.
- Electron transmission through the surface.
Sub-bandgap quantum yield
Measuring the quantum yield

Quantum yield = \frac{\text{number of emitted electrons}}{\text{number of incident photons}}

Main assumptions of the model

- Effective mass approximation with interface condition linking the envelope function in the semiconductor to wave function in vacuum.
- Band profile given by classical Poisson equation.
- Relaxation neglected.
- Scattering neglected.
- Recombination neglected.
- Type of initial states: "quasi" Bloch waves, point like states (defect, impurity, surface states, ionized acceptors).
Illustration of the sub-bandgap emission processes
Comparison experiment vs theory

GaAs

Acceptor concentration 10^{19} cm$^{-3}$
Bandgap ≈ 1.5 eV
Vacuum level $E_{\text{vac}} - E_F = 1.27$ eV.

GaN

Acceptor concentration 2×10^{20} cm$^{-3}$
Bandgap ≈ 3.4 eV
Vacuum level $E_{\text{vac}} - E_F = 1.5$ eV.

Electron energy distribution
Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV

V_{Cath}
Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV
Measuring the energy distribution of the emitted electrons
Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV

Sample
UHV chamber
Spectrometer
Faraday cup

V_{Cath}
I_F

e^- contact

hv

Γ

VBM

E_F

p-GaN

BBR

Energy

Vacuum

Γ

B

L

B

L

Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV

Sample

Spectrometer

Faraday cup

UHV chamber

hv

e

V_{Cath}

I

B

L

Γ

Γ'

S

VBM

E_F

p-GaN

BBR

Vacuum

Energy

J.-P. Banon

SFP - Paris - July 4th 2023

9 / 14
Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV
Measuring the energy distribution of the emitted electrons

Energy resolution = 50 meV
Energy distributions of emitted electrons

![Diagram showing energy levels and electron distribution](image-url)
Energy distributions of emitted electrons

![Diagram showing energy levels and transitions in a material such as p-GaN, with a graph below illustrating electron current as a function of energy above the Fermi level (E_F) for different photon energies (hv).]
Signatures of resonant states?
What are resonant states?
Resonant states

Consider the Schrödinger equation with varying potential *and/or* mass

\[-\frac{\hbar^2}{2} \nabla \cdot \left(\frac{\nabla \psi}{m} \right) + V \psi = E \psi\]
Over-doped p-GaN, $[\text{Mg}] \approx 2 \times 10^{20} \text{ cm}^{-3}$.
Signatures of resonant states?

Electron current (arb. units)

Derivative (arb. units)

Energy above E_F (eV)

Photon energy

LDOS$_{1D}(p = 0, z, E)$ (eV$^{-1}$, nm$^{-1}$)
Thank you for your attention.