

Two-photon optical shielding of collisions between ultracold polar molecules

<u>M. Lepers</u>, C. Karam, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, M. M. z. A. Borgloh, S. Ospelkaus, L. Karpa

Congrès Général de la SFP, July 4, 2023

Laboratoire Interdisciplinaire Carnot de Bourgogne ICB UMR CNRS 6303 icb.u⁻bourgogne.fr M. Lepers

Ultracold polar molecules

- Two alkalis: KRb, RbCs, NaRb, NaK, NaCs
- In their absolute ground state
- Anisotropic and long-range interactions
- Quantum simulation, ultracold chemistry , ...

BUT: limited lifetime

For all molecules !

 $KRb + KRb \longrightarrow K_2 + Rb_2 \text{ (excenergetic)}$ $NaK + NaK \longrightarrow Na_2 + K_2 \text{ (endoenergetic)}$

PRL 116, 205303 (2016)

BUT: limited lifetime

For all molecules !

 $KRb + KRb \longrightarrow K_2 + Rb_2 \text{ (exothermic)}$ $NaK + NaK \longrightarrow Na_2 + K_2 \text{ (endothermic)}$

PRL 116, 205303 (2016)

What is the origin of losses ?

- Sticky collisions ?
- Photoexcitation of complex by trapping light ?

Idea: preventing molecules from getting close to each other and starting a reaction

=> Shielding

= Engineer repulsive long-range interactions

04/07/2023

M. Lepers

• Optical field

Frequency close to D₂ transition of alkali atoms

Deteriorated by spontaneous emission

Na₂: PRA **51**, 1446 (1995)

• Optical field

Frequency close to D₂ transition of alkali atoms

Deteriorated by spontaneous emission

Na₂: PRA **51**, 1446 (1995)

Quasi-forbidden transitions in bialkali molecules

Transition $X^{1}\Sigma^{+}$ (v_x = 0, j_x = 0) $\rightarrow b^{3}\Pi_{0+}$ (v_b = 0, j_b = 1)

Theory for NaRb: PRL **125**, 153202 (2020)

$X \rightarrow b$ tranition in NaRb

$X \rightarrow b$ tranition in NaRb

BUT : 1 molecule photon scattering

04/07/2023

Idea: applying optical fields without spontaneous emission

=> 2-photon transition

In dressed basis $\{|\tilde{g}_1\rangle, |\tilde{g}_2\rangle, |\tilde{q}\rangle\}$ $H^I = \hbar \begin{pmatrix} 0 & 0 & \Omega_1/2 \\ 0 & \delta & \Omega_2/2 \\ \Omega_1/2 & \Omega_2/2 & \Delta \end{pmatrix}$

 $|q\rangle = |b, j_{b} = 1\rangle$ $\int \hbar \Delta$ Ω_{1} $\int \Omega_{2}$ $\int \frac{1}{\sqrt{2}} \hbar \delta$ $|g_{1}\rangle = |X, j_{X} = 0\rangle$ $|X, j_{X} = 0\rangle$

In dressed basis $\{|\tilde{g}_1\rangle, |\tilde{g}_2\rangle, |\tilde{q}\rangle\}$ $H^I = \hbar \begin{pmatrix} 0 & 0 & \Omega_1/2 \\ 0 & \delta & \Omega_2/2 \\ \Omega_1/2 & \Omega_2/2 & \Delta \end{pmatrix}$ Adiabatic elimination of $|\tilde{q}\rangle$ $\Delta \gg \Omega_1, \Omega_2, \Gamma_q$

04/07/2023

M. Lepers

2 photons & 2 molecules

$$T = T_R + \frac{\hbar^2 \mathbf{L}^2}{2\mu R^2}$$
$$H_i = B_0 \mathbf{J}_i^2$$
$$V(R) = V_{dd}(R) = \text{dipole-dipole}$$

 $H_{m-f} = \text{molec. 1 \& 2} - \text{fields 1 \& 2}$

2 photons & 2 molecules

$$T = T_R + \frac{\hbar^2 \mathbf{L}^2}{2\mu R^2}$$
$$H_i = B_0 \mathbf{J}_i^2$$
$$V(R) = V_{dd}(R) = dipole-dipole$$

 $H_{m-f} = molec. 1 \& 2$ - fields 1 & 2 $H_{LR}(R) = \frac{\hbar^2 \mathbf{L}^2}{2\mu R^2} + B_0 (\mathbf{J}_1^2 + \mathbf{J}_2^2) + V_{dd}(R)$ Diagonalization for each $R \ge 50$ a.u. $V_{LR}(R); |\psi\rangle = \sum_m \chi_m(R) |m\rangle$ $\Omega_{eff}(R) \propto \sum_{m,p} \chi_m(R) \chi_p(R) \langle m \| T^{(2)} \| p \rangle$

04/07/2023

M. Lepers

Basis sets $\{|m\rangle\}$

Lab-frame, fully uncoupled basis: $|j_i, m_i, j_k, m_k, \ell, m_\ell\rangle$

Basis sets $\{|m\rangle\}$

Lab-frame, fully uncoupled basis: $[j_i, m_i, j_k, m_k, \ell, m_\ell)$ **To better account for symmetries, fully-coupled** basis $[[j_i, j_k], j_{ik}, \ell, J, M\rangle^{(\pm)}$

- $\vec{J} = \vec{J}_{ik} + \vec{L} = (\vec{J}_1 + \vec{J}_2) + \vec{L}$ = total angular momentum of the complex (without HFS). *M* associated to its **z-projection**
- ℓ = partial wave
- $[j_i, j_k]$ = permutation
- (\pm) = inversion of all coordinates

Basis sets $\{|m\rangle\}$

Lab-frame, fully uncoupled basis: $[j_i, m_i, j_k, m_k, \ell, m_\ell)$ **To better account for symmetries, fully-coupled** basis $[[j_i, j_k], j_{ik}, \ell, J, M\rangle^{(\pm)}$

- $\vec{J} = \vec{J}_{ik} + \vec{L} = (\vec{J}_1 + \vec{J}_2) + \vec{L}$ = total angular momentum of the complex (without HFS). *M* associated to its **z-projection**
- ℓ = partial wave
- $[j_i, j_k]$ = permutation
- (\pm) = inversion of all coordinates

Initial collision channel = 2 ultracold ground-state bosonic molecules $|m_1\rangle = [[0,0], 0,0,0,0\rangle^{(+)}$

Selection rules

Quant. nber	Dipole-dipole	Raman
$[\Delta j_i, \Delta j_k]$	$[\pm 1, \pm 1]; [\mp 1, \pm 1]$	[0, ±2]
$\Delta \ell$	0 or ± 2*	0
ΔJ	0*	0 or \pm 1 or \pm 2*
ΔM	0	0, if = polarizations
parity	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$

* 0 \leftrightarrow 0, and 1/2 \leftrightarrow 1/2 for ΔJ

Selection rules

Quant. nber	Dipole-dipole	Raman	
$[\Delta j_i, \Delta j_k]$	$[\pm 1, \pm 1]; [\mp 1, \pm 1]$	[0, ±2]	
$\Delta \ell$	0 or ± 2*	0	
ΔJ	0*	0 or \pm 1 or \pm 2*	
ΔM	0	0, if = polarizations	
parity	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$	

* 0 \leftrightarrow 0, and 1/2 \leftrightarrow 1/2 for ΔJ

$$|m_{1}\rangle = [[j_{X} = 0, j_{X} = 0], j_{ik} = 0, \ell = 0, J = 0, M = 0\rangle^{(+)}$$

[1, 1], 0 or 2, 2, 2, 0\sqrt{(+)}
[1, 3], 0 or 2, 2, 2, 0\sqrt{(+)} \leftarrow |m_{2}\rangle = [[0, 2], 2, 0, 2, 0\sqrt{(+)}]

Results for NaK

Long-range potential energy curves

^{04/07/2023}

M. Lepers

Long-range potential energy curves

04/07/2023

M. Lepers

Long-range potential energy curves

Eigenvector components at R_c

Basis vector	Potential curve	$R_{C} = 240$ a.u. $\Delta_{eff} = 70$ MHz	$R_{C} = 170$ a.u. $\Delta_{eff} = 500$ MHz
$ m_1\rangle$ =[[0,0],0,0,0,0,0 ⁽⁺⁾	$ g_1 angle =$ init.	99.95 %	98.61 %
	$ g_2\rangle = A'$	10.90 %	16.16 %
$ m_2\rangle$ - [0 2] 2 0 2 0\ ⁽⁺⁾	$ g_2\rangle = \mathbf{B'}$	9.80 %	32.11 %
- [[0, 2], 2, 0, 2, 0]	$ g_2\rangle = C'$	78.88 %	49.26 %

Physical parameters

04/07/2023

M. Lepers

Physical parameters

04/07/2023

M. Lepers

Conclusion

- Possibility of two-photon optical shielding
- > No spontaneous emission or photon scattering
- ➤ « Mapping » on one-photon shielding
- > Applicable to other molecules than NaK
- > Possible use of other electronically excited states (A, B)

> Full scattering calculations

Phys. Rev. Research, accepted (2023)

Conclusion

- Possibility of two-photon optical shielding
- No spontaneous emission or photon emission
- ➤ « Mapping » on one-photon shielding
- > Applicable to other molecules than NaK
- > Possible use of other electronically excited states (A, B)
 - Full scattering calculations

Phys. Rev. Research, accepted (2023)

REGION BOURGOGNE FRANCHE COMTE

Electronically-excited PECs

Eigenvector components at R_c

Basis vector	Potential curve	$R_{C} = 240$ a.u. $\Delta_{eff} = 70$ MHz	$R_{C} = 170$ a.u. $\Delta_{eff} = 500$ MHz
$[[0,0],0,0,0,0\rangle^{(+)}$	$ g_1 angle =$ init.	99.95 %	98.61 %
	$ g_2 angle = A'$	10.90 %	16.16 %
[[0, 2], 2, 0, 2, 0) ⁽⁺⁾	$ g_2\rangle = \mathbf{B'}$	9.80 %	32.11 %
	$ g_2 angle = C'$	78.88 %	49.26 %
[X, 0, b, 1], 1, 0, 1, 1 $\rangle^{(-)}$	q angle =	33.06 %	33.17 %
	$ q\rangle = K$	16.74 %	16.68 %

Scheme of energy levels

04/07/2023

= Engineer repulsive long-range interactions

Species	C_6^{el} (a.u.)	PDM_X (a.u.)	PDM_b (a.u.)	$TDM_{X \to b}$ (a.u.)	$B_{(X)} \ ({\rm cm}^{-1})$	$B_{(b)} \ ({\rm cm}^{-1})$
$^{7}\mathrm{Li}^{23}\mathrm{Na}$	3333.6	0.2228	0.645	0.0082	0.374	0.387
$^{7}\mathrm{Li}^{39}\mathrm{K}$	6096.8	1.410	1.810	0.0216	0.256	0.274
$^{7}\mathrm{Li}^{87}\mathrm{Rb}$	7268	1.645	2.214	0.1149	0.215	0.231
$^{7}\mathrm{Li}^{133}\mathrm{Cs}$	9263	2.201	2.709	0.1327	0.187	0.204
$^{23}\mathrm{Na}^{39}\mathrm{K}$	7088.1	1.095	1.220	0.0456	0.0950	0.0951
$^{23}\mathrm{Na}^{87}\mathrm{Rb}$	8374.6	1.304	1.735	0.1918	0.0697	0.0700
23 Na 133 Cs	10642	1.845	2.369	0.4204	0.0579	0.0600
$^{39}\mathrm{K}^{87}\mathrm{Rb}$	12610.1	0.2423	0.491	0.1353	0.0378	0.0387
${}^{39}{ m K}{}^{133}{ m Cs}$	15481.9	0.7237	1.282	0.2342	0.0304	0.0320
$^{87}\mathrm{Rb}^{133}\mathrm{Cs}$	17839.4	0.4903	0.840	0.2697	0.0164	0.0170

NaRb with shielding and trapping lights

04/07/2023

M. Lepers

$X \rightarrow b$ tranition in NaRb

$X \rightarrow b$ tranition in NaRb

BUT : 1 molecule photon scattering

04/07/2023