Semiclassical modeling of an elementary chemical reaction inside helium nanodroplets

Florent Calvo

LiPhy, CNRS and University Grenoble Alpes, France

INTRODUCTION: SOLVATION IN HELIUM DROPLETS

Helium binds *extremely weakly* to nearly anything \implies solvates any compound in very gentle manner, achieving ultracold (<1 K) temperatures

 \Longrightarrow ideal for high-resolution spectroscopic characterization and for trapping exotic species

Helium nanodroplets of the bosonic element ⁴He are also superfluid. *However*, enhanced localization near ionic impurities and possible formation of snowballs (~1st shell is frozen)

LONG-RANGE ELECTRON TRANSFER IN HNDS

Alkali atoms and dimers M_k resist solvation in helium droplets

Experimental evidence for long-range electron transfer upon ionization of M_kC_{60} in helium droplets [Scheier group, JCP <u>145</u> (2016)]:

OUTLINE OF THIS PRESENTATION

 $\rightarrow\ \textit{Carry out a detailed atomistic modeling}}$ of the much simpler reaction,

 $(\mathrm{Na}^0 + \mathrm{Cl}^0) @\mathrm{He}_n \longrightarrow (\mathrm{Na}^+ \mathrm{Cl}^-) @\mathrm{He}_k + (n-k) \mathrm{He},$

 \rightarrow describe the correct electronic states of the reactants (neutral) and products (ionized)

as well as nuclear delocalization effects

and, as far as possible, as a function of explicit time

In this purpose we

- Design a reactive force field built upon the empirical valence-bond framework for NaCl embedded in the helium environment
- Investigate the reaction triggered by some collision energy or upon partial evaporation of the solvent

EMPIRICAL VALENCE-BOND (EVB) MODELING

The NaCl diatomic is modeled as a combination of its neutral (V_n) and ionized (V_i) states, a coupling term (V_c) being introduced to allow for both states to coexist continuously. Matrix of the simplified 2-state EVB model:

$$V_{\mathrm{NaCl}} = \left(egin{array}{cc} V_i & V_c \ V_c & V_n \end{array}
ight),$$

with V_i and V_c potentials shifted in the limit of infinite Na–Cl separation by 1.52 eV [IP(Na)-EA(Cl) difference]

In the presence of helium atoms, both states V_i and V_n are dressed by appropriate pairwise repulsion-dispersion terms, including those corresponding to He-He interactions. In the ionic state a polarizable contribution on helium atoms due to the charges on Na⁺ and Cl⁻ ions is also added

The dynamics of Na, CI embedded in helium nanodroplets is addressed through path-integral and ring-polymer molecular dynamics simulations

POTENTIAL ENERGY CURVES

SCS-MP2 calculations at the complete basis set limit:

⇒NaCl binds about 100 times more strongly than Na⁺He, which binds about 100 times more strongly than NaHe ⇒Of all interactions, NaHe is the weakest (about 1 cm⁻¹), followed by He₂ (7 cm⁻¹) [but He₂ indeed exists]

Equilibrium structures in the neutral state

Given the energetics, He_{1000} droplets doped with the (radical) $\rm Na^0$ and $\rm Cl^0$ atoms look like

 \Rightarrow Helium is a decent solvent for chlorine, but *very poor* for

sodium

 \implies lonic bond formation requires bringing the two atoms closer to each other, which we attempt to achieve through *collisions* or *solvent evaporation*, staying on the EVB ground state

FORMING NaCl through collisions

Landau-Zener criterion for adiabaticity satisfied for collision velocities below 16 $\rm km/s$

⇒significant velocities needed to pierce through the droplet

・ロト・西ト・ヨト・ヨー シック・

A case study: $Na \rightarrow Cl@He_{1000}$

Analysis of a trajectory at 4000 m/s: distance fluctuations among the RPMD beads, in the final state and as a function of time:

 \Rightarrow significant delocalization enhanced by the solvent \Rightarrow the reaction takes about 10 ps but is initiated at the curves crossing (no evidence for long-range electron transfer)

FORMING NaCl through solvent evaporation

 \Rightarrow without excess energy, NaCl is formed spontaneously once the droplet has shrunk enough down to 70 He atoms \Rightarrow the reaction appears also rather slow (~10 ps)

CONCLUDING REMARKS

- Preliminary attempt at characterizing a chemical reaction involving electron transfer, a quantum solvent and for two reaction partners with different solvation behaviors
- Nuclear delocalization seems important even for NaCl, although no evidence for long-range transfer was identified in the path-integral simulations

FUTURE DIRECTIONS

- Need for explicit electrons?
- Closer look at the transition toward the ionic state and the possible influence of snowballs
- Combine with TDDFT-fluid for the helium description, allowing to account for *exchange statistics*

CONCLUDING REMARKS

- Preliminary attempt at characterizing a chemical reaction involving electron transfer, a quantum solvent and for two reaction partners with different solvation behaviors
- Nuclear delocalization seems important even for NaCl, although no evidence for long-range transfer was identified in the path-integral simulations

FUTURE DIRECTIONS

- Need for explicit electrons?
- Closer look at the transition toward the ionic state and the possible influence of snowballs
- Combine with TDDFT-fluid for the helium description, allowing to account for *exchange statistics*

THANK YOU FOR YOUR ATTENTION!