Cosmological structure formation with negative mass

Giovanni Manfredi

Centre National de la Recherche Scientifique Institut de Physique et Chimie des Matériaux de Strasbourg

Gabriel Chardin, CNRS, France Bruce Miller, Texas Christian University, USA Jean-Louis Rouet, Université d'Orléans, France

Antimatter and gravitation

• Why we see no antimatter in today's universe?

- Antimatter created in the primordial universe, but...
- Observations exclude large amounts of antimatter in visible universe
 - > No signature of gamma rays produced during annihilations
- CP violation cannot explain observed asymmetry
- Open questions on gravitation
 - Acceleration of the expansion of the universe (1998) Dark Energy
 - Matter content of the universe Dark Matter
 - Primordial inflation (~1980) Inflaton field
- Gravitational behavior of antimatter
 - Current experiments at CERN: GBAR, ALPHA-g, AEGIS

Cosmological models

- The standard model: ΛCDM
 - Λ → dark energy (70%) → accelerated expansion (≈ *repulsive gravity!*)
 - CDM (Cold Dark Matter): 25%
 - Ordinary matter (baryonic) : 5%
 - Scale factor:
 - > $a(t) \sim t^{2/3}$ (matter-dominated age)
 - $\succ a(t) \sim e^{\Lambda t}$ (Λ -dominated age)
- **Dirac-Milne universe** (see: A. Benoit-Lévy and G. Chardin, A&A 537, A78 (2012))
 - Matter-antimatter symmetric universe
 - Repulsion between matter and antimatter (negative mass)
 - Antimatter spreads almost uniformly across the universe
 - Total matter content = 0 ($\Omega_M = 0$)
 - No cosmological constant ($\Omega_{\Lambda} = 0$); No need for inflationary phase
 - Scale factor: $a(t) \sim t$

Mass in Newtonian mechanics

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
	B (antiplasma)	_	_	+
	C (Bondi)	—	+	+
	D (antiinertia)	+	—	+

EP:

 $m_p = m_i$

Mass in Newtonian mechanics

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

$$EP: \quad m_p = m_i$$

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
	B (antiplasma)	—	—	+
antimatter				
	D (antiinertia)	+	_	+

Bondi: runaway acceleration

Dirac-Milne scenario

- However, the above scenarios are not suited to model the Dirac-Milne universe
- Antiplasma:
 - Does not respect the EP
 - Allows formation of negative mass structures
- Bondi:
 - Requires negative inertial mass to ensure energy conservation
 - Unlikely features such as runaway acceleration
- We need a generalization of Newtonian gravity for two particle species

Type of matter	Type of matter	Interaction
+	+	Attraction
_	—	Repulsion
_	+	Repulsion
+	_	Repulsion

- Antimatter spreads
 uniformly
- Matter coalesces into structures
- Cannot be realized with a single Poisson's equation

 $\Delta \phi_+ = 4\pi Gm(+n_+ - n_-),$ $\Delta \phi_- = 4\pi Gm(-n_+ - n_-)$

General matrix formalism

$$\Phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_+ \\ n_- \end{pmatrix}, \quad \widehat{\mathbf{M}} = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \qquad \qquad M_{ij} = \pm 1$$

Since $M_{++} = 1$, there are $2^3 = 8$ possible cases (one trivial, with all elements = +1)

AntiplasmaBondiAnti-inertiaDirac-Milne
$$\widehat{\mathsf{M}}_{\mathrm{ap}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \widehat{\mathsf{M}}_{\mathrm{Bondi}} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad \widehat{\mathsf{M}}_{\mathrm{ai}} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}.$$
 $\widehat{\mathsf{M}}_{\mathrm{DM}} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$

Open question: how to incorporate this approach into General Relativity

• Bimetric theory?

Expanding universe – Comoving coordinates

$$\frac{d^2r}{dt^2} = E_r(r,t),$$

Scale factor

$$r = a(t)\hat{r},$$

One-dimensional geometry

ACDM cosmology

Density

Phase space

Dirac-Milne cosmology

Density

Phase space

Matter-density power spectrum

Matter-density power spectrum

ACDM data from: M. Tegmark et al., Astrophys. J. 606, 702 (2004)

Two-component Dirac-Milne system

3D simulations and dark matter/MOND

RAMSES code simulation

Faber-Jackson relation

3D simulations and dark matter/MOND

$$\begin{aligned} \nabla^2 \phi_+ &= 4\pi G(\rho_+ - \rho_-), \\ \nabla^2 \phi_- &= 4\pi G(-\rho_+ - \rho_-). \end{aligned} \qquad \rho_-(r) &= \rho_0 \exp\left(\frac{-m\phi_- + \mu}{k_{\rm B}T}\right), \end{aligned}$$

Conclusions

- Newtonian gravity with negative mass
 - Standard cases with various choices of m_i , m_a , m_p (Bondi, antiplasma,...)
 - Alternative "bimetric" theories \rightarrow Dirac-Milne
- Cosmological structure formation with negative mass
 - Comparison between ACDM and Dirac-Milne
 - In Dirac-Milne universe, structure formation begins at an earlier epoch and freezes before ≈ 10¹⁰ Gy
 - Present power spectra are qualitatively similar to ΛCDM

Local MOND-like behavior

- 3D simulations show depletion zone and antimatter halos
- Compatible with Faber-Jackson relation with exponent 2.6
- Flattening of rotation curves

Bibliography

- G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, *Cosmological structure formation with negative mass*, Phys. Rev. D **98**, 023514 (2018).
- G. Chardin, G. Manfredi, *Gravity, antimatter and the Dirac-Milne universe*, Hyperfine Interactions, **239**: 45 (2018)
- G Manfredi, JL Rouet, BN Miller, G Chardin, Structure formation in a Dirac-Milne universe: comparison with the standard cosmological model, Physical Review D 102, 103518 (2020)
- G. Chardin, Y. Dubois, G. Manfredi, B. Miller and C. Stahl, *MOND-like behavior in the Dirac–Milne universe: Flat rotation curves and mass versus velocity relations in galaxies and clusters*, Astronomy & Astrophysics **652**, A91 (2021).