Cosmological structure formation with negative mass

Giovanni Manfredi
Centre National de la Recherche Scientifique
Institut de Physique et Chimie des Matériaux de Strasbourg

Gabriel Chardin, CNRS, France
Bruce Miller, Texas Christian University, USA
Jean-Louis Rouet, Université d’Orléans, France
Antimatter and gravitation

• Why we see no antimatter in today’s universe?
 – Antimatter created in the primordial universe, but…
 – Observations exclude large amounts of antimatter in visible universe
 ➢ No signature of gamma rays produced during annihilations
 – CP violation cannot explain observed asymmetry

• Open questions on gravitation
 – Acceleration of the expansion of the universe (1998) – Dark Energy
 – Matter content of the universe – Dark Matter
 – Primordial inflation (~1980) – Inflaton field

• Gravitational behavior of antimatter
 – Current experiments at CERN: GBAR, ALPHA-g, AEGIS
Cosmological models

- **The standard model: ΛCDM**
 - $\Lambda \rightarrow$ dark energy (70%) \rightarrow accelerated expansion (\approx repulsive gravity!)
 - **CDM** (Cold Dark Matter): 25%
 - Ordinary matter (baryonic): 5%
 - Scale factor:
 - $a(t) \sim t^{2/3}$ (matter-dominated age)
 - $a(t) \sim e^{\Lambda t}$ (Λ-dominated age)

- **Dirac-Milne universe** (see: A. Benoit-Lévy and G. Chardin, A&A 537, A78 (2012))
 - Matter-antimatter symmetric universe
 - Repulsion between matter and antimatter (negative mass)
 - Antimatter spreads almost uniformly across the universe
 - Total matter content = 0 ($\Omega_M = 0$)
 - No cosmological constant ($\Omega_\Lambda = 0$); No need for inflationary phase
 - Scale factor: $a(t) \sim t$
Mass in Newtonian mechanics

- Active gravitational mass m_a: \[\Delta \phi = 4\pi G \rho = 4\pi G m_a n \]
- Passive gravitational mass m_p: \[F = -m_p \nabla \phi \]
- Inertial mass m_i: \[\mathbf{p} = m_i \mathbf{\dot{r}} \]
- Equation of motion: \[\ddot{\mathbf{r}} = -\left(\frac{m_p}{m_i} \right) \nabla \phi. \]

<table>
<thead>
<tr>
<th>matter</th>
<th>Active grav. mass</th>
<th>Passive grav. mass</th>
<th>Inertial mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>matter</td>
<td>A (standard)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>antimatter</td>
<td>B (antiplasma)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>antimatter</td>
<td>C (Bondi)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>antimatter</td>
<td>D (antiinertia)</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

EP: $m_p = m_i$
Mass in Newtonian mechanics

- Active gravitational mass m_a: $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p: $F = -m_p \nabla \phi$
- Inertial mass m_i: $p = m_i \dot{r}$
- Equation of motion: $\ddot{r} = -(m_p/m_i) \nabla \phi$.

$$\text{EP: } m_p = m_i$$

<table>
<thead>
<tr>
<th></th>
<th>Active grav. mass</th>
<th>Passive grav. mass</th>
<th>Inertial mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>matter</td>
<td>A (standard)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>antimatter</td>
<td>B (antiplasma)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>D (antiinertia)</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Bondi: runaway acceleration
However, the above scenarios are not suited to model the Dirac-Milne universe.

Antiplasma:
- Does not respect the EP
- Allows formation of negative mass structures

Bondi:
- Requires negative inertial mass to ensure energy conservation
- Unlikely features such as runaway acceleration

We need a generalization of Newtonian gravity for two particle species:

<table>
<thead>
<tr>
<th>Type of matter</th>
<th>Type of matter</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>Attraction</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>Repulsion</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
<td>Repulsion</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
<td>Repulsion</td>
</tr>
</tbody>
</table>

- Antimatter spreads uniformly
- Matter coalesces into structures

Cannot be realized with a single Poisson’s equation:

\[
\Delta \phi_+ = 4\pi G m (n_+ - n_-), \\
\Delta \phi_- = 4\pi G m (n_+ - n_-)
\]
General matrix formalism

\[\Phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix}, \quad n = \begin{pmatrix} n_+ \\ n_- \end{pmatrix}, \quad \hat{M} = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix}, \quad M_{ij} = \pm 1 \]

Since \(M_{++} = 1 \), there are \(2^3 = 8 \) possible cases (one trivial, with all elements = +1)

Antiplasma\hspace{2cm}**Bondi**\hspace{2cm}**Anti-inertia**\hspace{2cm}**Dirac-Milne**

\[\hat{M}_{\text{ap}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \hat{M}_{\text{Bondi}} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad \hat{M}_{\text{ai}} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad \hat{M}_{\text{DM}} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \]

Open question: how to incorporate this approach into General Relativity

- Bimetric theory?
Expanding universe – Comoving coordinates

Equation of motion

\[\frac{d^2 r}{dt^2} = E_r(r, t), \]

Scale factor

\[r = a(t) \hat{r}, \]

\[a(t) \propto e^{\Lambda t} \quad \Lambda CDM \text{ late times} \]

\[a(t) \sim t^{2/3} \quad \text{Einstein–de Sitter (} \Lambda \text{CDM early times)} \]

\[a(t) \sim t \quad \text{Dirac – Milne} \]
One-dimensional geometry
ΛCDM cosmology

Density

- $z=116$.
- $z=24$.
- $z=4$.
- $z=0$.
- $z=-0.95$.

Phase space

Now
Dirac-Milne cosmology

Density

Phase space

Density

Phase space

Now
Matter-density power spectrum

Dirac-Milne

$P(k) \ (h^{-3} \text{Mpc}^3)$

$z=0.9$
$z=0.0$
$z=0.9$
$z=9.9$
$z=34.1$
$z=108.0$

$K \ (h \text{Mpc}^{-1})$

10^{-3}
10^{-2}
10^{-1}
1
10

10^{-6}
10^{-5}
10^{-4}
10^{-3}
10^{-2}
10^{-1}

ΛCDM

$P(k) \ (h^{-3} \text{Mpc}^3)$

$z=-0.95$
$z=0.0$
$z=4.4$
$z=24.0$
$z=116.0$
$z=1080.0$

$K \ (h \text{Mpc}^{-1})$

10^{-3}
10^{-2}
10^{-1}
1
10

10^{-1}
10^{0}
10^{1}
10^{2}
10^{3}

$P_{\text{peak}} \ (h^{-3} \text{Mpc}^3)$

$K_{\text{peak}} \ (h \text{Mpc}^{-1})$

a

10^{-3}
10^{-2}
10^{-1}
1
10

10^{-2}
10^{-1}
1

ΛCDM

Dirac-Milne
Matter-density power spectrum

Two-component Dirac-Milne system
3D simulations and dark matter/MOND

RAMSES code simulation

Faber-Jackson relation

\[m \propto v^\alpha, \alpha \approx 2.6 \]
3D simulations and dark matter/MOND

\[
\begin{align*}
\nabla^2 \phi_+ &= 4\pi G (\rho_+ - \rho_-), \\
\nabla^2 \phi_- &= 4\pi G (-\rho_+ - \rho_-).
\end{align*}
\]

\[\rho_-(r) = \rho_0 \exp \left(\frac{-m\phi_- + \mu}{k_B T} \right),\]

![Graph showing density profile](image)

![Graph showing potential profile](image)
Conclusions

• **Newtonian gravity with negative mass**
 – Standard cases with various choices of m_i, m_a, m_p (Bondi, antiplasma, …)
 – Alternative “bimetric” theories → Dirac-Milne

• **Cosmological structure formation with negative mass**
 – Comparison between ΛCDM and Dirac-Milne
 – In Dirac-Milne universe, structure formation begins at an earlier epoch and freezes before $\approx 10^{10}$ Gy
 – Present power spectra are qualitatively similar to ΛCDM

• **Local MOND-like behavior**
 – 3D simulations show depletion zone and antimatter halos
 – Compatible with Faber-Jackson relation with exponent 2.6
 – Flattening of rotation curves

