The dark matter puzzle

Ultra-Light Axions (ULA)
Scalar-field, non-interacting

WIMPS
Schwabe & Niemeyer 2022

Françoise Combes
July, 2023
Where is the dark matter?

Galaxy clusters

Planck : power spectrum $\Omega_b, \Omega_m, \Omega_\Lambda$

Abell 370
The WIMP miracle

Possible to obtain the required abundance of dark matter with particles of mass $\sim 100 \text{ GeV}$, with the weak interaction force annihilation rate $<\sigma v> \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$

In early Universe, abundance of particles is « frozen », they decouple when their interaction

$\mathbf{n} <\sigma v> \sim 1/t_{\text{hubble}}$

Coincidence: corresponds to the lightest particle of super-symmetry (neutralino)

But in LHC: no super-symmetry, No new particle!
Particles beyond standard model?

<table>
<thead>
<tr>
<th>fermions (3 générations de la matière)</th>
<th>bosons (forces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>quark mass: up (2,4 MeV/c²)</td>
<td>photon (0 MeV/c²)</td>
</tr>
<tr>
<td>charge: up (2/3)</td>
<td>charge: photon (0)</td>
</tr>
<tr>
<td>spin: up (1/2)</td>
<td>spin: photon (1)</td>
</tr>
<tr>
<td>name: up</td>
<td>name: photon</td>
</tr>
<tr>
<td>quark mass: charm (1,27 GeV/c²)</td>
<td></td>
</tr>
<tr>
<td>charge: charm (2/3)</td>
<td></td>
</tr>
<tr>
<td>spin: charm (1/2)</td>
<td></td>
</tr>
<tr>
<td>name: charm</td>
<td></td>
</tr>
<tr>
<td>quark mass: bottom (171,2 GeV/c²)</td>
<td></td>
</tr>
<tr>
<td>charge: bottom (2/3)</td>
<td></td>
</tr>
<tr>
<td>spin: bottom (1/2)</td>
<td></td>
</tr>
<tr>
<td>name: bottom</td>
<td></td>
</tr>
</tbody>
</table>

From the Big-Bang
- ~400 photons/cm³
- ~300 neutrinos/cm³
- 0,1 billions of billions/s cross us

→ **Search for WIMPS since 1985**

Extension to sterile neutrinos?
Ly-α: constraints on m(warm)

25 quasars $z > 4$: spectra obtained at Keck \textit{(Viel et al 2013)}
Ly-α forest and comparison with simulations \(m_{\text{WDM}} > 3.3 \text{ keV} \) (2σ)

\[\Lambda \text{CDM} \]
\[\text{WDM 2 keV} \]
\[\text{WDM 1 keV} \]

WDM, \(m_X > 4.65 \text{ keV} \) thermal relics
\(m_s > 29 \text{ keV} \) non-resonant production
Primordial Black holes

$\beta = \rho_{\text{PBH}}/\rho_{\text{tot}}$

γ, yellow: neutron capture, GW

For $M \sim 10^{15} g$, too many γ-rays produced

Since PBH form in the radiative era, they can be considered as non-baryonic, and $=\text{CDM}$

However, their mass is limited by MACHOS, EROS experiments

Small masses evaporate

Gutierrez et al 2017
Candidates for the dark matter

New physics, beyond the standard model SM

- Kaluza-Klein DM in UED
- Kaluza-Klein DM in RS (Randall-Sundrum)
 - Axion
 - Axino
 - Gravitino
 - Photino
 - SM Neutrino
 - Sterile Neutrino
 - Sneutrino
 - Light DM
 - Little Higgs DM
 - Wimpzillas
 - Cryptobaryonic DM
 - Q-balls

- Champs (charged DM)
- D-matter
- Cryptons
- Self-interacting
- Superweakly interacting
- Braneworld DM
 - Heavy neutrino
 - Neutralino (WIMP)
 - Messenger States in GMSB
 - Branons
 - Chaplygin Gas
 - Split SUSY
 - Primordial Black Holes
 - Mirror Matter

...
Fuzzy dark matter

Cusps exist in galaxy clusters, but not in galaxies.
In dwarf galaxies, cores of ~1 kpc

Bosons generated in non-thermal mechanisms \rightarrow axions
(\textit{ALP, Marsh 2016}) cold particles, which can collapse
BEC “Bose-Einstein condensate”, macroscopic state at low T

- Finite mass, very small, λ de Broglie, $\lambda_{dB} = \frac{h}{m_{a}v}$
$\Rightarrow \lambda_{dB} = 1-2$ kpc

- In fact $\lambda_{dB} \sim 1-2$ kpc for $m_{a} = 10^{-22}$ eV, and $v \sim 10$ km/s

For masses $m_{a} = 10^{-22}$ eV, quantum pressure prevents the formation of structures below $M_{cut} = 3 \times 10^{8} m_{22}^{-3/2} M_{\odot}$ (\textit{Hui et al 2017})
A long history

Already 40 yrs!

Baldeschi, Gelmini, Ruffini (1983)
Galactic dark matter halos made of fermions of \(m = 10^{-3} \) eV,
or bosons of \(m = 10^{-24} \) eV

Mass-size relation for equilibrium
For \(M \sim 10^{12} M_\odot \), \(R \sim 30\text{kpc} \)

\(M/R = 9.9 \hbar^2 / G m^2 \)

\(\sin (1994) \) rotation curves with pseudo Nambu-Goldstone boson

\(H u \ et \ al \ (2000) \), are they self-interacting (SI) or not?
Scalar field SFDM \(\rightarrow \) SI-SFDM
Böhmer & Harko (2007)

\(H u i \ et \ al \ (2017) \) review and revisit the problem: \(m > 10^{-21} \) eV
Fluctuation spectrum

Temperature anisotropies are undistinguishable from ΛCDM
Foidl & Rindler-Daller 2022

Scalar-field DM (SFDM without self-interaction \rightarrow FDM)
Or Ultra-light actions (from QCD) \rightarrow cut the high spatial frequencies k

CMB acoustic modes
Simulations AMR: eq. Schrödinger- Poisson

Core= soliton, Halo= clumpy aspect + wavy (Schive +2014)
Quantum interferences: 9 orders of magnitude

Schive et al 2014
Milky Way: Aquarius, satellites

Nori et al 2023 AX-GADGET, compared with CDM

Expected scaling law $\rho_c \sim R_c^{-4}$ while observations say $\rho_c \sim R_c^{-1}$

$\Sigma = 150 M_\odot/\text{pc}^2$

Donato et al 2009

Zoom x 5
Milky Way: Aquarius, satellites

Nori et al 2023

Comparison with CDM and also when $\text{Msat} > \text{Mcut}$ only (CDM-CUT)
Evolution with redshift

Nori et al 2023

$z=4$ to $z=0$,

From light to dark lines

Even if density curves flatten
the asymptotic equilibrium
is not reached at $z=0$
Due to the mass cut-off, halos are linked with thin filaments.
Filaments do not fragment!

May & Springel 2022

Search for structures have to increase threshold

Big problem of resolution, to resolve the de Broglie length
Simulations of a dwarf galaxy

Assuming gas and star formation, stochastic and stationary
Inducing fluctuations, different from white noise (n=0)

Ramses simulation of an isolated dwarf galaxy (Read et al 2016)
$M_{200} = 10^9 M_\odot$, $f_g=0.15$, concentration 22.23

Cusp is mitigated in a Hubble time (Hashim et al 2023)

Box = 5kpc Important fluctuations due to SF, SN
Core formation?

The slope of the radial density distribution is smoothed out, although not tending to a flat core.

$T_{\text{relax}} = 13.2 \text{ Gyr}$

Hashim et al. 2023
The case of Eridanus II

In this ultrafaint dwarf galaxy, there exists an old star cluster, which existence and size put also a constraint

Heating due to core oscillations $\Rightarrow m_a > 10^{-19}$ eV

May be the region inside the core is not completely valid

There are resonances for the oscillations

Marsh & Niemeyer 2018
High-z massive galaxies?

Gong et al 2022

JWST found numerous galaxies $7 < z < 11$

Big problem if star formation is made in the whole mass function of galaxies

→ Too many UV to reionize the Universe
Contradiction to Planck CMB

FDM, but also WDM with sterile neutrinos
→ Suppress small-mass galaxies

![Graph showing mass function for different values of neutrino mass and redshift](image)
MOND = MOdified Newton Dynamics

At weak acceleration

\[a \ll a_0 \] MOND regime \[a = \left(a_0 a_N \right)^{1/2} \]

\[a \gg a_0 \] Newtonian \[a = a_N \]

\[a_0 = 10^{-10} \text{ m/s}^2 \sim 10^{-11} \text{g} \]
Milgrom (1983)

Asymptotically

\[a_N \sim 1/r^2 \implies a \sim 1/r \]
\[\implies V^2 = \text{cste} \]

Covariant theory: TeVeS
\[\implies \text{Gravitationnal lenses} \]
Bekenstein 2004

Conformal Gravity: Mannheim et al 2012

\[\frac{M_{\text{dyn}}}{M_{\text{vis}}} = f\left(\frac{a_N}{a_0} \right) \]

\[\frac{V_{\text{obs}}^2}{V_b^2} = a/a_N \]

\[a_0 = 10^{-10} \text{ m/s}^2 \]
Success at weak surface densities

\[\Sigma < \Sigma_0 \sim 150 \, M_\odot/pc^2, \quad \Rightarrow \text{the critical acceleration } a_0 \]

In particular dwarf galaxies

The rotation curves of all galaxy types

\[a << a_0 \]

N1560

\[a > a_0 \]

N2903

TF relation
Influence of the dark halo?

Dynamics of galaxies,
Formation of spirals and bars

TeVeS covariant theory \(\Rightarrow \) but unstable
ruled out by gravitational waves \((c_{GW} \neq c) \)
But Skordis et al 2019, new version, with \(c_{GW} = c \)
New theory with Vector field

Unit time-like vector
Gravitational lensing
\(c_{GW} = c \)
Summary: axions or modified gravity?

Many constraints on the mass m_a, but not definitive

Some baryons+DM simulations (Aquarius, AX-Gadget, AxiREPO)

Approximations: cut-off of small structures (but negative pressure?) SP fluid, Madelung approx, SI or not? Repulsive quantum force?

Interactions SMBH and soliton? (same order of masses)

Lyman-α forest? $\Rightarrow m > 21 \ 10^{-22} \text{ eV}$ (Nori et al 2019)

Small halos (dwarfs) are less dense, larger cores
Massive halos, denser, unresolved solitons