SYMPATHETIC COOLING OF TRAPPED ⁹Be⁺ IONS : **A TEST-BED FOR TAMING ANTIMATTER IONS**

D. Drapier¹, L. Guidoni³, T. Henner³, L. Hilico^{1,2}, J.-P. Karr^{1,2}, J.-P. Likforman³, A. Douillet^{1,2}

¹Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris ²Université d'Evry-Val-d'Essonne, F-91000 Evry ³Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS, F-75013 Paris

Motivations

GBAR experiment at CERN

quantique et applications

Laboratoire Kastler Brossel

Concept: Completely stop an a anti-hydrogen atom in order to perform a free fall experiment at rest.

Process:

-Produce H⁺ ions.

-Deccelerate an H⁺ ion from 1keV to 1eV.

-Capture in a Paul trap and cool down the anti-ion to 10µK.

-Photodetach a positron at threshold to get H at

1st cooling step: \overline{H}^+ at 1eV (10⁷mK) \rightarrow 1mK

Adopted solution:

Sympathetically cool the \overline{H}^+ ion using a reservoir of laser cooled Be⁺ ions in a volumique Paul trap.

N body problem: Difficult to simulate over long periods of time (> ms).

Our solution:

Perform an experimental simulation. $H^{+/9}Be^{+} \rightarrow {}^{9}Be^{+/88}Sr^{+}$ -mass ratio (88/9≈9.78) -⁹Be⁺ is laser addressable

rest. -Mesure the free fall time to get the \overline{g} constant.

Detector (t₁)

Preliminary results

Fig 2: Up, picture of a Sr⁺ Coulomb crystal in a 3D linear Paul trap. Down, fluorescence image of the Sr⁺ crystal after the injection of Be⁺ ions.

In the experiment (Fig 2, down) the dark core is the signature of the presence of sympathically cooled Be⁺ ions. We see in the simulation as well as in the experiment a strong spatial segregation between the Be⁺ and Sr⁺ ions

New Experiment

Ion Launching Simulation

Trapping of individual Be⁺

Both species are laser addressable: information about the Be⁺ cooling dynamics

Control of the Be⁺ launching energy up to 1eV

Energy levels diagram of Sr⁺ for Doopler cooling

Double Paul trap

Alunina gold-plated PCB 5 wire geometry 1 RF electrode 13 DC electrodes

Trap height : 640µm RF frequency : 14 to 20MHz RF amplitude 500-1000Vpp

5s ²S_{1/2}

Experimental Set-up

Controlled Be⁺ initial kinetic energy

Approach:

- Cooling Be⁺ (Ec≈0eV) in one trap (U) - Apply V_{push} at the end (pink electrodes) - Apply V_{close} (red electrodes) Δt later

Find the launching parametres:

The potential barrier at the center must be lower than those at the edges. - Find **DC voltages** corresponding

Simulation :

Université Paris Cité

- Find V_{push} to enter the target trap Solve molecular dynamics equations - Find **Δt** (on first simulation) - Finaly compute a new simulation to find Vclose

Fig 3: Trapping potential along the longitudinal axis before, during an after the launching of a Be⁺ ion.

Fig 4: Ion trajectory along the longitudinal axis.

Status of the Experiment

Fig 5: Picture of the experiment (vacuum chamber and optics)

Sr⁺ launching achive with initial kinetic energy superior to 100meV and a success rate of 80%

Next steps: -Trapping large Sr⁺ crystals. -Trap both Be⁺ and Sr⁺. -Test launching protocol with Be⁺. -Sympathetic cooling of Be⁺.

(F)

E

Perspectives:

-Ground state cooling of an Be⁺/Sr⁺ pair. -Add Ca⁺ ions in the Sr⁺ Coulomb crystal

