from flat bands to chiral spin liquids Adolfo G. Grushin, Néel Institute, CNRS

150 years of the SFP — Paris, July 7th, 2023

European Research Council Established by the European Commission

Insulator!

Q

Image: Le Nobel Chevelu

Insulator!

Q

Image: Le Nobel Chevelu

Bi₂Se₃

3D TI

BCB SSB Dirac point BVB

Chen et al Science (2010)

Kx

• Topological Materials Database

Ξ

mpound Contains					Only these elements 🔲				ude			ICSI	ICSD Number					
Bi Se									eg. 01 N - or -					eg. 123456				
Show A	dvanci	ed Sear	ch															
	H																	
	Li	Be											В	с	N	0		
	Na	Mg											Al	Si	Ρ	s		
	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se		
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		
	Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po		
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv		
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

92 Entries found for Bi, Se, showing:

Compound Symmetry Group Topological Indices	Crossing Typ
Bi1 Se1 225 (Fm-3m)	Point
Bi1 Se1 12 (C2/m) Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se1 164 (<i>P</i> -3 <i>m</i> 1) Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se2 12 (C2/m)	
Bi2 Se2 164 (<i>P</i> -3 <i>m</i> 1) Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi2 Se3 62 (Pnma)	
Bi2 Se3 166 (<i>R</i> -3 <i>m</i>) Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =0, Z ₄ =3	

Search

Lu

Lr

Туре

• Topological Materials Database

Ξ

BCB

SSB

BVB

Dirac point

4

Compour		Only these elements 🔵				Exclude					ICSD Number								
Bi Se						eg. 01 N				e	eg. 123456								
▼ Show #	dvance	ed Searc	ĥ																
	Н																		
	Li	Be											В	С	N	0			
	Na	Mg											AI	Si	Р	s			
	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se			
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te			
	Cs	Ba	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po			
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb			
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			
92 Entrie	s found	for Ri	Se sho	wina															
ALL (92	e) [1	1 (18)	SM	(14)	Trivia	al (60)													
🔷 Compound 🔅 Sym					Group			Topologic	al Indices			Crossing Type							
Bi1 Se1		2	25 (Fm	-3 <i>m</i>)							Point								
Bi1 Se1	2 (C2/	'm)			Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0														
Bi1 Se1 164					m1)			Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0											
Bi1 Se2 12 ((C2/m)														
Bi2 Se2	2		1	64 (P-3	P-3m1) Topological invariants									S					
Bi2 Se3 62 (na,	-	/												
Bi2 Sea	3		1	66 (R-3	m)	<		Z _{2w,1} =0,	Z _{2w,2} =0,	, Z _{2w,3} =0), Z ₄ =3	>							
						1							-						

Search

Lu

Lr

Туре

Topological invariants

Quantized responses

Topological invariants

Quantized responses

impractical / numerically costly

Topological invariants

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

— lattice symmetries

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

— lattice symmetries

--- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

s, p, d...

Space Group

lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

s, p, d...

6

Space Group

lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

s, p, d...

6

Space Group

lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

s, p, d...

6

Quantized responses **Topological invariants** $(-1)^{\nu} = \qquad \zeta_i$ TRIM

symmetry eigenvalues

Vergniory et al. Nature (2019) Zhang et al. Nature (2019) Tang et al. Nature (2019)

Amorphous solids

Amorphous > Crystal "Nearly all materials can [...] be prepared as amorphous solids" R. Zallen, Amorphous Solids Amorphous solids

Cheap and scalable

Topological amorphous phases

Do they exist? How do we find them in real solids? Any different physics compared to crystals?

Topological amorphous phases

Do they exist? How do we find them in real solids? Any different physics compared to crystals?

Topological induced by disorder

Li et al PRL (2009) Groth et al. PRL (2009)

Onsite disorder

Topology survives disorder

Bond disorder

Onsite disorder

Some choices

Structural disorder

Topology survives disorder

Typical Anderson problem: crystal + disorder

Some choices

Onsite disorder

Structural disorder

Topology survives disorder

Typical Anderson problem: crystal + disorder

Some choices

Onsite disorder

Structural disorder

Is this any different?

Synthetic systems:

Theory:

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018)

Exp: Mitchell, et al. Nat Phys (2018)

Synthetic systems:

Theory:

Exp: Mitchell, et al. Nat Phys (2018)

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018)

Synthetic systems:

Theory:

Mitchell, et al. Nat Phys (2018) Exp:

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018)

Synthetic systems:

Theory:

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018) Exp: Mitchell, et al. Nat Phys (2018) Liu et al PRL (2020) Zhou et al Light: Science and App. (2020) Jia, et al Sci. Adv. (2023) Zhang, et al Sci. Advances (2023)

Topological amorphous phases

Do they exist?

Topological amorphous phases

Do they exist?

Do they exist?

Do they exist? How do we find them in real solids?

Do they exist? How do we find them in real solids? Any different physics compared to crystals?

Do they exist? How do we find them in real solids? Any different physics compared to crystals?

Amorphous graphene

Toh et al. Nature (2020)

Amorphous graphene

Toh et al. Nature (2020)

Bond-angles and distances ~ to crystal

Toh et al. Nature (2020)

Bond-angles and distances ~ to crystal

Spin-polarized surface states Corbae et al Nat Materials (2023)

Brillouin-zone-like repetitions Cyocis, Marsal et al, 2302.05945

a-Bi₂Se₃

Toh et al. Nature (2020)

Bond-angles and distances ~ to crystal

a-Bi₂Se₃

Spin-polarized surface states Corbae et al Nat Materials (2023)

Brillouin-zone-like repetitions Cyocis, Marsal et al, 2302.05945

a-ferromagnetic thin films Fe_xGe_{1-x}, Fe_xSn_{1-x}, Co_xSi_{1-x}...

Larger AHE than crystal

Souma et al PRB (2020) Fujiwara, K. et al. Nat. Commun. 14, 3399 (2023).

Peculiar magneto-resistance (a-CoSi)

Molinari, K. et al. ACS App. Elec. Mat. (2023)

Space Group

lattice symmetries

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

— wavefunctions

band connectivity + symmetries labels

s, p, d...

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

band connectivity + symmetries labels

Space Group

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

Model Hamiltonians

Model Hamiltonians

Model Hamiltonians

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

ab-initio simulations

$\gamma = \text{Tr}[(P - \tilde{P})^2]/2$

Liu and Vanderbilt PRB (2014)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

ab-initio simulations

$$\gamma = \sum_{n \in \text{occ}} |\psi_n\rangle \langle \psi_n|$$
$$\gamma = \text{Tr}[(P - \tilde{P})^2]/2$$

Liu and Vanderbilt PRB (2014)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas MPI PKS

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas **MPI PKS**

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

ab-initio simulations

Structural spillage arXiv: 2301.02686

Paul Corbae Berkeley

Frances Hellmann Berkeley

Sinead Griffin Berkeley Daniel

Varjas MPI-PKS

Model Hamiltonians

Symmetry indicators Q. Marsal, D. Varjas, AGG PNAS, (2020)

Quentin Marsal Néel Institute

Daniel Varjas **MPI PKS**

captures topological transition in a-Bi₂Se₃

Corbae et al, Nat Materials (2023)

ab-initio simulations

Structural spillage arXiv: 2301.02686

predicts a-Bismuthene and its bilayer as QSH

Frances Hellmann Berkeley

Berkeley

Daniel Varjas **MPI-PKS**

Daniel Paul Muñoz-Segovia Corbae

DIPC

Berkeley

Do they exist? Yes, also in solids

How do we find them in real solids? Use spillage or symmetry indicators (topological markers) Any different physics compared to crystals?

solid state: a-Bi₂Se₃

Corbae et al, AGG, Lanzara, Hellmann Nat Materials (2023) Cyocis, Marsal et al, Hellmann, AGG, Lanzara 2302.05945

Reversible switch — fast

Q. Marsal, D. Varjas, AGG Phys Rev B, (2023)

Controllable growth — slow

AGG, C. Repellin Phys. Rev. Lett (2023)

Reversible switch — fast

Q. Marsal, D. Varjas, AGG Phys Rev B, (2023)

Q. Marsal, Néel Institute

D. Varjas, MPI PKS

Controllable growth — slow

AGG, C. Repellin Phys. Rev. Lett (2023)

Reversible switch — fast

Q. Marsal, D. Varjas, AGG Phys Rev B, (2023)

Q. Marsal, Néel Institute

D. Varjas, MPI PKS

Controllable growth — slow

AGG, C. Repellin Phys. Rev. Lett (2023)

structural disorder

Cécile Repellin LPMMC / Grenoble

Reversible switch — fast

A. Bake et al **14**, Nat. Comm 1693 (2023)

Controllable growth — slow

Amorphous graphene Tian et al. Nature (2023)

structural disorder

Kitaev Ann. Phys. (2006)

gapless spin-liquid

Kitaev Ann. Phys. (2006)

Kitaev Ann. Phys. (2006)

Kitaev Ann. Phys. (2006)

Local Chern marker $C(\mathbf{r}) = 2\pi \operatorname{Im}\langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$

Bianco and Resta, PRB (2011)

Kitaev Ann. Phys. (2006)

Local Chern marker

Chiral spin-liquid!

- = chiral majorana edge states
 - non-abelian excitations

Kitaev Ann. Phys. (2006)

Local Chern marker $C(\mathbf{r}) = 2\pi \operatorname{Im}\langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$ Bianco and Resta, PRB (2011) \mathbf{O} 640Chiral spin-liquid! 14002500= chiral majorana edge states **•** 5700 non-abelian excitations 0.40.3 0.5

 n_{odd}

Kitaev Ann. Phys. (2006)

Local Chern marker $C(\mathbf{r}) = 2\pi \operatorname{Im} \langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$ Bianco and Resta, PRB (2011) 2 0 Chiral spin-liquid! = chiral majorana edge states non-abelian excitations 0.40.50.3

 n_{odd}

Kitaev Ann. Phys. (2006)

Local Chern marker $C(\mathbf{r}) = 2\pi \operatorname{Im} \langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$ Bianco and Resta, PRB (2011) 2 \mathbf{O} Chiral spin-liquid! = chiral majorana edge states ~a-graphene non-abelian excitations 0.40.50.3

 n_{odd}

Topological amorphous solids database?

Muñoz-Segovia et al arXiv: 2301.02686

2306.17117

 $\gamma = \text{Tr}[(P - \tilde{P})^2]/2$

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

2306.17117

Topological amorphous solids database?

 $\gamma = \text{Tr}[(P - \tilde{P})^2]/2$

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Topological amorphous solids database?

$\gamma = \text{Tr}[(P - \tilde{P})^2]/2$

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Topological amorphous solids database?

Interactions?

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Low vortexability = FQHE ground state

Alejandro Uria-Alvarez

Topological amorphous solids database?

Interactions?

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Low vortexability = FQHE ground state

Alejandro Uria-Alvarez

Topological amorphous solids database?

Interactions?

amorphous topological superconductors?

high

IOW

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Low vortexability = FQHE ground state

Alejandro Uria-Alvarez

Topological amorphous solids database?

ractions?		amorphous topological supercondu		
	high	Material	Crystal T _c	Amorph
EAE		Bi	10-4 K	
SAR -		Be	0.03 K	
	low	Ga	1 K	

Muñoz-Segovia et al arXiv: 2301.02686

amorphous topological metals?

Nielsen-Ninomiya survives amorphicity

Poster!

Justin Schirmann

Selma Franca 2306.17117

Low vortexability = FQHE ground state

Alejandro Uria-Alvarez

Topological amorphous solids database?

actions?		amorphous topological supercondu			
	hiah	Material	Crystal T _c	Amorp	
	Ingin	Bi	10-4 K		
	low				

Amorphous topological solids

from flat bands to chiral spin liquids Adolfo G. Grushin, Néel Institute, CNRS

150 years of the SFP — Paris, July 7th, 2023

European Research Council Established by the European Commission

How do we find topological amorphous solids? Any different physics compared to crystals?

Amorphous graphene

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

3. Crystalline and amorphous regions coexist Toh et al. Nature (2020)

structural disorder

Tian et al. Nature (2023)

Amorphous graphene

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

3. Crystalline and amorphous regions coexist Toh et al. Nature (2020)

structural disorder

4. Lattice disorder can be controlled

Tian et al. Nature (2023)

olled 2023)

Any different physics compared to crystals?

How do we find topological amorphous solids?

Can this knob drive a topological transition?

AGG, C. Repellin PRL (2023)

crystal

polycrystal

amorphous

structural disorder

Honeycomb

Kitaev Ann. Phys. (2006)

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} W_p \mathbf{Z} \mathbf{X} Х $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spín liquid $\phi_p = \pm 1$ JŸ Gapless spin liquid

Decorated Honeycomb

Yao and Kivelson PRL (2007)

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} \mathbf{X} W_p σ^{i} \mathbf{Z} \mathbf{Z} \mathbf{X} \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ ју Gapless spin liquid

Decorated Honeycomb

Yao and Kivelson PRL (2007)

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} \mathbf{X} W_p \mathbf{Z} \mathbf{X} \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ Jy Gapless spin liquid

Decorated Honeycomb

Yao and Kivelson PRL (2007)

Pentaheptite lattice

Peri et al PRB (2020)

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} W_p \mathbf{Z} \mathbf{X} X $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ JY Gapless spin liquid

Yao and Kivelson PRL (2007)

 $\phi_p = \pm 1$

Decorated Honeycomb

Pentaheptite lattice

Peri et al PRB (2020)

Odd plaquettes break TRS

Honeycomb

Kitaev Ann. Phys. (2006)

 \mathbf{X} W_p \mathbf{Z} \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ JY Gapless spin liquid

Yao and Kivelson PRL (2007)

 $\phi_p = \pm 1$

Odd plaquettes break TRS

Decorated Honeycomb

Pentaheptite lattice

Peri et al PRB (2020)

Gapped chiral spin-liquid!

= chiral majorana edge states non-abelian excitations

G. Casella et al 2208.08246

Lattice

Groundstate

37

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

Local Chern marker

Bianco and Resta, PRB (2011)

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

Local Chern marker

Bianco and Resta, PRB (2011)

Chiral spin-liquid!

= chiral majorana edge states non-abelian excitations

Voronization

Voronization

Voronization

structural disorder

Voronization

structural disorder

Controlled Voronization

crystal

polycrystal

amorphous

J^Kv

J^Kv

 n_{odd}

 n_{odd}

 n_{odd}

 n_{odd}

AGG, C. Repellin PRL (2023)

40

 n_{odd}

 n_{odd}

AGG, C. Repellin PRL (2023)

40
A topological gap as disorder is increased

 n_{odd}

AGG, C. Repellin PRL (2023)

40

A topological gap as disorder is increased

 n_{odd}

AGG, C. Repellin PRL (2023)

40

A topological gap as disorder is increased

 n_{odd}

n_{odd}

AGG, C. Repellin PRL (2023)

40

Spin-chirality

Spin-chirality

local spin-chirality $\langle \hat{\chi}_l \rangle = \langle \hat{\chi}_{ilj} \rangle + \langle \hat{\chi}_{jlk} \rangle + \langle \hat{\chi}_{kli} \rangle$

 $\hat{\chi}_{ijk} = \mathbf{S}_i \cdot \left(\mathbf{S}_j \times \mathbf{S}_k\right)$

Spin-chirality

local spin-chirality $\langle \hat{\chi}_l \rangle = \langle \hat{\chi}_{ilj} \rangle + \langle \hat{\chi}_{jlk} \rangle + \langle \hat{\chi}_{kli} \rangle$

crystal polycrystal

 $\hat{\chi}_{ijk} = \mathbf{S}_i \cdot \left(\mathbf{S}_j \times \mathbf{S}_k\right)$

amorphous

How stable is it?

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$ $\phi = \frac{3\pi}{2}$ Stripy Spin liquid

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$

$\phi = \frac{3\pi}{2}$ Strips

Spin liquid

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

26 spins, 6 plaquettes

Exact diagonalization

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$

26 spins, 6 plaquettes

 dJH^2 $d^2 E$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Exact diagonalization

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Exact diagonalization

26 spins, 6 plaquettes

Exact diagonalization Kitaev + Heisenberg 26 spins, 6 plaquettes $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$ 2000Spin liquid Zigzag $\phi = \frac{\pi}{2}$ 1500E62 $\sum 1000$ 500 $\mathbf{0}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Engineering structural disorder?

focused ion beam

A. Bake et al **14**, Nat. Comm 1693 (2023)

Local Chern marker

crystalline

amorphous

Engineering structural disorder?

focused ion beam

A. Bake et al **14**, Nat. Comm 1693 (2023)

quantised thermal Hall: Reed and Green PRB (2000)

Local Chern marker

amorphous

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

dished by the European Commis

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

ished by the European Commis

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

ished by the European Commit

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

75% max gap size at 30% of odd-plaquettes (~a-graphene)

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

ished by the European Commit

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

75% max gap size at 30% of odd-plaquettes (~a-graphene)

chiral QSL as robust as gapless QSL