Electron-photon Chern number in cavity-embedded 2D moiré materials

Danh-Phuong Nguyen,¹ Geva Arwas,¹ Zuzhang Lin,^{2,3} Wang Yao,^{2,3} and Cristiano Ciuti¹

Université Paris Cité ¹Université Paris Cité, CNRS, Matériaux et Phénomènes Quantiques, 75013 Paris, France ²Department of Physics, The University of Hong Kong, Hong Kong, China ³HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, China

I. Abstract

We explore theoretically how the topological properties of 2D materials can be manipulated by cavity quantum electromagnetic fields for both resonant and off-resonant electron-photon coupling, with a focus on van der Waals moiré superlattices. We investigate an electron-photon topological Chern number for the cavity-dressed energy minibands that is well defined for any degree of hybridization of the electron and photon states. While an off-resonant cavity mode can renormalize electronic topological phases that exist without cavity coupling, we show that when the cavity mode is resonant to electronic miniband transitions, new

II. Cavity QED Hamiltonian

- Twisted bilayer TMD materials: Developed from single-layer tight-binding to twisted bilayer continuum model. Lattice constant goes from a_0 to a_0/θ with the twisting angle θ .
- \triangleright Cavity: Split-ring resonator, consider only single-mode, spatially homogeneous field A_0 .
- \blacktriangleright Light-matter interaction: Peierls substitution with dimensionless coupling strength $g = eA_0a_0/\hbar$ from tight-binding model. Redevelop twisted bilayer TMD materials Hamiltonian with photonic degree of freedom.
- Single-body Hamiltonian:

$$\hat{\mathcal{H}} = \hbar \omega_c \hat{a}^{\dagger} \hat{a} + \frac{1}{2m^{\star}} \begin{pmatrix} (\hat{\mathbf{p}} + \hbar \boldsymbol{\kappa}_- - e\mathbf{A}^{(xy)}(\hat{a} + \hat{a}^{\dagger}))^2 & 0\\ 0 & (\hat{\mathbf{p}} + \hbar \boldsymbol{\kappa}_+ - e\mathbf{A}^{(xy)}(\hat{a} + \hat{a}^{\dagger}))^2 \end{pmatrix} - \begin{pmatrix} \hat{V}_t^v \ \hat{U}_0^{v\dagger} \\ \hat{U}_0^v \ \hat{V}_b^v \end{pmatrix} - i \frac{\omega_c eA^{(z)} d}{2} (\hat{a} - \hat{a}^{\dagger}) \tau_z.$$

$$(1 \text{ Only valid for } g \leq 0.1.$$

III. Electron-photon Chern number

- \blacktriangleright Periodic boundary condition in Equation (1) \implies Electron-photon eigenstates $|\Psi_{n\mathbf{k}}^{(e-p)}\rangle$.
- Electron-photon Chern number of band n:

VI. Low purity regime

- Low photon frequency, therefore resonance between minibands.
- Finite coupling \implies Gap opening, new bands, new **exotic** Chern numbers.

$$\mathcal{C}_{n}^{(\mathrm{e-p})} = \int \frac{d^{2}k}{2\pi} i \sum_{\mu,\nu} \epsilon_{\mu\nu} \left\langle \partial_{k_{\mu}} \Psi_{n\mathbf{k}}^{(\mathrm{e-p})} | \partial_{k_{\nu}} \Psi_{n\mathbf{k}}^{(\mathrm{e-p})} \right\rangle.$$
(2)

IV. Electronic purity

► Electronic density matrix $\hat{\rho} = \text{Tr}_{\text{phot}} \left(|\Psi^{(e-p)}\rangle \langle \Psi^{(e-p)}| \right)$. ► Electronic purity: $\mathbb{P} = \mathsf{Tr}_{\mathsf{el}}(\hat{\rho}^2)$. $0 < \mathbb{P} \leq 1$ (Maximally mixed state) (Pure state)

V. High purity regime

- High photon frequency.
- Shifts the phase boundary significantly.
- Can be reconstructed from effective electronic Hamiltonian.

VII. Conclusion

Light-matter interaction changes the phases significantly. Future work: What is the relation between electron-photon Chern number and conductance?

VIII. Bibliography

1. DP. Nguyen et. al, arXiv:2303.08804, (2023)

email : danh-phuong.nguyen@u-paris.fr