Coulomb explosion of alkali dimers on a superfluid ⁴He_N **droplet: a** ⁴He-TDDFT simulation

Ernesto García Alfonso¹, Manuel Barranco^{1,2}, Martí Pi² and Nadine Halberstadt¹

¹Université Toulouse 3 and CNRS, Laboratoire des Collisions, Agrégats, Réactivité, UMR 5589, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France

²Departament FQA, Facultat de Física, and IN2UB, Universitat de Barcelona. Diagonal 645, 08028 Barcelona,

Spain

ABSTRACT

We simulate the Coulomb explosion upon double ionisation of alkali dimers (Ak₂, Ak= Li,Na, Rb, Cs) bound to the surface of a superfluid droplet of 1000 to 50000 ⁴He atoms, using ⁴He-TDDFT [1] This work was motivated by the experiment of Kristensen et al. [2],[3], who used this process to deduce the abundance ratio of neutral dimers formed on the surface of a helium nanodroplet in either the singlet X ${}^{1}\Sigma_{g}^{+}$ or the triplet a ${}^{3}\Sigma_{u}^{+}$ electronic state. ⁴He-TDDFT is a semi-empirical method describing the helium density at equilibrium (static version) or during real time dynamics, which has proven to be the best compromise between accuracy and the ability to simulate superfluid helium droplets of realistic size. We first obtain the equilibrium configuration of Ak₂ singlet (X ${}^{1}\Sigma_{g}^{+}$) or triplet (a ${}^{3}\Sigma_{u}^{+}$) on the droplet surface.

COULOMB EXPLOSION

⁴He TD-DFT : Framework

 $Na_2@^4He_{1000}$ after $\Delta t = 1$ ps

Singlet state $(^{1}\Sigma_{g}^{+})$

Triplet state $({}^{3}\Sigma_{u}^{+})$

The equilibrium configuration is determined by using DFT applied to ⁴He atoms at zero temperature. The total energy is expressed as a function of the ⁴He density

$$E[\rho] = T[\rho] + E_c[\rho] = \frac{\hbar^2}{2m} \int d\mathbf{r} |\nabla \Psi(\mathbf{r})|^2 + \int d\mathbf{r} \mathcal{E}_c[\rho]$$

The functional $\mathcal{E}_c[\rho]$ has been designed to reproduce the experimental dispersion curve for elementary excitations in liquid ⁴He. The ground state structure of the system is obtained solving the Euler-Lagrange (EL) equation resulting from the functional variation of the total energy $E[\rho]$ with respect to ρ or $\Psi(\mathbf{r})$ under the condition of a fixed number of ⁴He atoms.

Dopants are treated as classical particles , therefore He-Dopant interaction is simply added as an external potential.

$$E[\rho] \to E[\rho] + \sum d\mathbf{r} \, v(\mathbf{r})\rho(\mathbf{r}) \quad \to \quad \left\{ -\frac{\hbar^2}{2m_4} \nabla^2 + \frac{\delta \mathcal{E}_c}{\delta \rho} + \sum_{i=1}^2 V_{He-Ak}(|\mathbf{r} - \mathbf{r}_i|) \right\} \Psi(\mathbf{r}) = \mu \Psi(\mathbf{r})$$

⁴He TD-DFT

"sudden" double ionization:

$$\int v(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} \text{ where } v(\mathbf{r}) = \sum_{i=1}^{2} V_{He-Ak^{+}}(|\mathbf{r}-\mathbf{r}_{i}|)$$

Coupled equations of motion

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}) = \left[-\frac{\hbar^2}{2m_{He}} \nabla^2 + \frac{\partial \mathcal{E}_c}{\partial \rho(\mathbf{r})} + \sum_{i=1}^2 V_{He-Ak^+} (|\mathbf{r} - \mathbf{r}_i|) \right] \Psi(\mathbf{r})$$
$$m_{Ak^+} \ddot{\mathbf{r}}_j = -\left\{ \int d\mathbf{r} \ V_{He-Ak^+} |\mathbf{r} - \mathbf{r}_j| \ \nabla \rho(\mathbf{r}) + (-1)^{-i} \frac{\mathbf{R}}{R} \frac{d}{dR} [V_{Ak^+ - Ak^+}(R)]|_{R=|\mathbf{r}_2 - \mathbf{r}_1|} \right\}$$

CONCLUSIONS AND PERSPECTIVES

We have been able to simulate the Coulomb explosion of all Ak_2 on He_{1000} and He_{5000}

good agreement with experiment about the kinetic energy peaks position

RESULTS

Once the statics has been done, we switch the potential from Ak-Ak to Ak^+-Ak^+ in order to ignite the Coulomb explosion.

Experimental Kinetic energy (eV): Li⁺,Na⁺,K⁺,Rb⁺,Cs⁺ [3]

Kinetic energy per atoms (eV) at req

	Our work		Experimental Ref [4]	
Ak ₂	X $^{1}\Sigma_{g}^{+}$	a ${}^{3}\Sigma_{u}^{+}$	X $^{1}\Sigma_{g}^{+}$	a ${}^{3}\Sigma_{u}^{+}$
Li	2.690	1.743	_	1.69
Na	2.327	1.370	2.34	1.39
K	1.822	1.235	1.83	1.26
Rb	1.689	1.164	1.71	1.19
Cs	1.539	1.095	1.42	1.06

Droplet size contribution

- several contributions to their width identified: Ak₂
 vibration, droplet size distribution, Ak₂ orientation /
 droplet surface. But simulated width still too narrow
- □ **new feature** identified: **bending** of the ions trajectories

REFERENCES

- [1] M. BARRANCO, F. COPPENS, N. HALBERSTADT, A. HERNANDO, A. LEAL, D. MA-TEO, R. MAYOL, and M. PI, "Zero temperature DFT and TDDFT for ⁴He: A short guide for practitioners", Unpublished, 2017.
- [2] H. H. KRISTENSEN, Laser-induced rotation of alkali dimers on the surface of helium nanodroplets, Ph. D. Progress Report, June 2022.
- [3] H. H. KRISTENSEN, L. KRANABETTER, C. A. SCHOUDER, J. ARLT, F. JENSEN, and H. STAPELFELDT, *Physical Review B* **107**, 023104 (2023).
- [4] H. H. KRISTENSEN, L. KRANABETTER, C. A. SHOUDER, C. STAPPER, J. ARLT, M. MUDRICH, and H. STAPELFELDT, *arXiv* **2111-1254**, 1 (2022).

Width of the kinetic energy peaks due to Ak₂ vibration

