

Low temperature quantum dynamics of oxygen exchange reactions involving ${ }^{17} 0$

G. Guillon, M. Lepers, P. Honvault

MARS group, Lab ICB, Physics Department,
CNRS/Univ. de Bourgogne, Dijon, France
$26^{\text {e }}$ congrès general de la SFP 2023, July 3-7, Paris, France

OUTLINE

- Context: cold oxygen molecules
- PESs and quantum scattering methods
- Isotope exchange reactions: ${ }^{17} \mathrm{O}+{ }^{16} \mathrm{O}_{2} \&{ }^{16} \mathrm{O}+{ }^{17} \mathrm{O}_{2}$
- Symmetric reaction: ${ }^{17} \mathrm{O}+{ }^{17} \mathrm{O}_{2}$
- Conclusions

Context \& Motivation

- $\mathrm{O}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}-\right)$ is a natural candidate for magnetic trapping (simplest paramagnet)
- O_{2} is of wide chemical interest

Study of reactions involving O_{2} in controlled low temperature environments

Typical examples: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{O}$

$$
\mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+\mathrm{O}
$$

Helium clusters or magnetic trap: species not amenable to laser-cooling

- Carbon atoms have been magnetically co-trapped alongside O_{2}

Karpov et al. NJP (2020)

- ${ }^{17} \mathrm{O}_{2}$ particularly adapted for buffer gas cooling, because of richer rotational structure
- Ortho- ${ }^{17} \mathrm{O}_{2}$ more amenable to magnetic trapping due to isolated high-field-seeking state with $N=0$: no trap loss due to crossing of magnetic levels (as happens in ${ }^{16} \mathrm{O}_{2}$)
- ${ }^{17} \mathrm{O}_{2}$ has been shown to give collision rates with He comparable to that for CaH

Potential for $\mathrm{O}_{3}\left({ }^{1} \mathrm{~A}^{\prime}\right)$: TKTHS PES

Tyuterev et al. PRL (2014)

Global Minimum $\mathrm{C}_{2 \mathrm{v}}$:
$r_{e}=2.4 a_{0}$
$\Theta_{e}=117^{\circ}$

$$
D_{e}=9220 \mathrm{~cm}^{-1}
$$

Quantum reaction dynamics: TIQM formalism

Solution of the Time-Independent Schrodinger Equation (TISE) $H \psi=E \psi$ for nuclei Hamiltonian in democratic hypers-pherical (DHS) coordinates (1 distance, 5 angles):

$$
H=-\frac{1}{2 \mu \rho^{5}} \frac{\partial}{\partial \rho} \rho^{5} \frac{\partial}{\partial \rho}+\frac{\Lambda^{2}}{2 \mu \rho^{2}}+V(\rho, \theta, \phi)
$$

angular momentum J projection on ppal axis: helicity Ω
hyper-radius ρ

Define ρ-dependent basis functions $\begin{aligned} & \text { Define } \rho \text {-dependent basis functions } \\ & \text { (surface-states) }\end{aligned} \Phi_{k \Omega}^{J M \epsilon_{I} \sigma}(\rho ; \theta, \phi, \alpha, \beta, \gamma)=\varphi_{k}^{\epsilon_{I} \sigma \Omega}(\rho ; \theta, \phi) N_{\Omega}^{J M \epsilon_{I}}(\alpha, \beta, \gamma)$

Solution of TISE expanded in all angular d.o.f. but the hyper-radius ρ :
global

$$
\Psi^{J M \epsilon_{I} \sigma}(\rho, \theta, \phi, \alpha, \beta, \gamma)=\frac{1}{\rho^{5 / 2}} \sum_{k \Omega} \Phi_{k \Omega}^{J M \epsilon_{I} \sigma}\left(\rho_{m} ; \theta, \phi, \alpha, \beta, \gamma\right) f_{k \Omega}^{J \epsilon_{I} \sigma}\left(\rho_{m} ; \rho\right)
$$ function

Using this expansion in the TISE we are led to a set of $2^{\text {nd }}$ order coupled equations for $f_{k \Omega}^{J \epsilon_{I} \sigma}$

Quantum reaction dynamics: method

Computations within the time-independent formalism

Calculations done with in-house HYP3D code: Launay et al. CPL (1990)
Body-fixed formalism
Symmetry-adapted hyper-spherical harmonics
Matching at large ρ to optimize overlap between internal DHS and external Jacobi
Computation of surface-states basis at ρ_{m}-values (sectors) for all Ω
\square For each J, total ψ expanded in this basis
Resultant coupled equations solved using «log-derivative » propagator
Numerically propagated ψ matched to asymptotic form to obtain T-matrix
\square Computations at numerous energies E_{c}

- Cross sections:

$$
\sigma_{v j}^{v^{\prime} j^{\prime}}\left(E_{c}\right)=\frac{\pi}{(2 j+1) \kappa_{v j}^{2}} \sum_{J \Omega \Omega^{\prime}}(2 J+1)\left|T_{v^{\prime} j^{\prime} \Omega^{\prime} v j \Omega}^{J}\right|^{2}
$$

- Rate constants:

$$
k_{v j}(T)=\sqrt{\frac{8 k_{B} T}{\pi \mu_{R}}} \frac{1}{\left(k_{B} T\right)^{2}} \int_{0}^{\infty} E_{c} \sigma_{v j}\left(E_{c}\right) e^{-E_{c} / k_{B} T} d E_{c}
$$

Identical nuclei: the permutation symmetry problem

Basic assumption: no spin-dependent term in Hamiltonian

Write the total wave function as a simple tensor product

$\Psi=\psi_{\mathrm{el}} \psi_{\text {nuc.space }} \psi_{\text {nuc.spin }}$

Total: vs binary exchange:

- symmetric for bosons
- antisymmetric for fermions

Nuclear spin function

The spin symmetry restricts the space symmetry

Influence on observables (cross sections)

Two identical nuclei: A + X2 type systems

$$
A+X_{2} \rightarrow\left\{\begin{array}{ll}
A+X_{2} & (\alpha: \text { elastic/inelastic) } \\
A X+X & (\beta: \text { reactive })
\end{array} \quad 2\right. \text { final arrangements }
$$

2 X nuclei with spin s (Nucleus A not affected by permutation symmetry)

Total number of spin states: $(2 s+1)^{2} \quad$ Permutation group of 2 particles: $\boldsymbol{P}_{\mathbf{2}}$
shape (or Young diagram)

$C_{s} \cong$	P_{2}	e	(12)	
\square	A^{\prime}	$[2]$	1	1
\square	$A^{\prime \prime}$	$\left[1^{2}\right]$	1	-1

Action of transposition (12) on nuclear spin function :

$$
(12) \psi_{s_{A} m_{A}} \psi_{S M}=(-)^{2 s+S} \psi_{s_{A} m_{A}} \psi_{S M}
$$

${ }^{16} \mathrm{O}^{16} \mathrm{O}(66)$ and ${ }^{17} \mathrm{O}^{17} \mathrm{O}$ (77) diatomics

$\square_{\left(A^{\prime \prime}\right)}$
(fermions)
${ }^{17} 0 \quad(s=5 / 2)$

\Rightarrow even (ortho) \& odd (para) j rot. levels $\left[(12) \psi=(-)^{j}(-)^{s} \psi=-\psi\right]$

The ${ }^{17} \mathrm{O}+{ }^{16} \mathrm{O}{ }^{16} \mathrm{O}$ reaction

Cross sections

$\checkmark 8+66$ reaction is slightly more exothermic than $7+66$
$\checkmark 7+66$ reaction is slightly faster

Collisions with ${ }^{17} \mathrm{O}^{17} \mathrm{O}$ (77)

$s=5 / 2$ fermions $\Rightarrow(12) \psi=\left(-j(-)^{s} \psi=-\psi\right.$
$6 \times 6=36$ spin states
Total nuclear spin S:

S	5	4	3	2	1	0
$2 S+1$	11	9	7	5	3	1

S even: 15 spin states para- ${ }^{17} \mathrm{O}_{2}$ or p77 $j=1,3,5 \ldots$

S odd: 21 spin states
ortho ${ }^{17} \mathrm{O}_{2}$ or $077 j=0,2,4 \ldots$

Cross sections for $6+77$:

The ${ }^{16} \mathrm{O}+\mathrm{o} / \mathrm{p}-{ }^{17} \mathrm{O}^{17} \mathrm{O}$ reaction

Cross sections

Rate constants

$\checkmark 6+88$ reaction is slightly more endothermic than $6+77$
$\checkmark 6+77$ reaction is much faster

Three identical nuclei: $\mathrm{X}+\mathrm{X}_{2}$ type systems

$\mathbf{X}+\mathbf{X}_{\mathbf{2}} \boldsymbol{\rightarrow} \mathbf{X}+\mathbf{X}_{\mathbf{2}} \quad$ Only one final arrangement (if E_{c} not too high)
3 X nuclei with spin $s \quad$ Total number of spin states: $(2 s+1)^{3}$
Permutation group of 3 particles: $\boldsymbol{S}_{\boldsymbol{3}}$
shape (or Young diagram)

$\mathcal{S}_{3} \simeq C_{3 v}$	$(\bullet)(\bullet)(\bullet) \simeq e$	$3(\bullet)(\bullet \bullet) \simeq 3 \sigma_{v}$	$2(\bullet \bullet \bullet) \simeq 2 C_{3}$
$[3] \simeq A_{1}$	1	1	1
$\left[1^{3}\right] \simeq A_{2}$	1	-1	1
$[2,1] \simeq E$	2	0	-1

This last 2-dimensional irrep. (Specht module) generated by 2 std polytabloids built on the std tableaux
LImportant for ortho-para conversions

Due to indistinguishibility of nuclei, we can have:

- ELASTIC process

$$
\begin{aligned}
& \mathrm{O}+\mathrm{O}_{2}(v=0, j) \mathrm{O}+\mathrm{O}_{2}(v=0, j) \text { (« pure » elastic) } \\
& \longrightarrow \mathrm{O}_{2}(v=0, j)+\mathrm{O} \text { («rearranging ») }
\end{aligned} \quad \begin{aligned}
& \text { Indistinguihable } \\
& \text { alternatives in } \mathrm{QM}
\end{aligned}
$$

- NONELASTIC process

$$
\left.\begin{array}{rl}
\mathrm{O}+\mathrm{O}_{2}(v=0, j) & \longrightarrow \mathrm{O}+\mathrm{O}_{2}\left(v^{\prime}=0, j^{\prime}\right) \\
\text { (inelastic) } \\
\longrightarrow \mathrm{O}_{2}\left(v^{\prime}=0, j^{\prime}\right)+\mathrm{O} & \text { (rearranging) }
\end{array}\right\} \quad \begin{gathered}
\text { Ibid. with } \\
j^{\prime} \neq j
\end{gathered}
$$

Computation of spin weights (uncoupled representation)

Simply count the spin states:

$$
T^{3}(V)=V \otimes V \otimes V
$$

d-dimensional space for one nuclei
decomposes as:

$$
\begin{aligned}
& d=\operatorname{dim} V=2 s+1 \\
& d=6 \text { for } s=5 / 2
\end{aligned}
$$

$$
T^{3}(V)=P^{3}(V) \oplus \Lambda^{3}(V) \oplus M^{3}(V) \oplus \tilde{M}^{3}(V)
$$

three-nuclei
tensor space
totally totally symmetric antisymmetric tensor space tensor space
\# components:

$$
n_{A_{1}}=\tau(d, 3)=\binom{d+3-1}{d-1}=\frac{(d+2)!}{(d-1)!3!}
$$

$$
n_{A_{1}}=\frac{(d)(d+1)(d+2)}{6}=\frac{(2 s+1)(2 s+2)(2 s+3)}{6}=56
$$

$$
n_{A_{2}}=\frac{(d-2)(d-1)(d)}{6}=\frac{(2 s-1)(2 s)(2 s+1)}{6}=20
$$

$$
n_{E}=\frac{(d-1)(d)(d+1)}{3}=\frac{(2 s)(2 s+1)(2 s+2)}{3}=70
$$

Weight
for cross
Sections:

$$
\begin{aligned}
w_{A_{1}} & =\frac{n_{A_{1}}}{n_{A_{1}}+n_{E}} \\
w_{E} & =\frac{n_{E}}{n_{A_{1}}+n_{E}}
\end{aligned}
$$

Example: ${ }^{17} \mathrm{O}+{ }^{17} \mathrm{O}^{17} \mathrm{O}$, all nuclei are fermions, $\mathrm{s}=5 / 2$

In general, decomposition of nuclear motion upon S_{3} irreps:

$$
\psi_{\text {nuc.space }} \equiv \psi=c_{A_{1}} \psi^{A_{1}}+c_{A_{2}} \psi^{A_{2}}+c_{E} \psi^{E}
$$

We distinguish two processes:
$7+\mathrm{o} 77 \longrightarrow \begin{cases}7+\mathrm{o} 77 & (\alpha) \\ \mathrm{p} 77+7 & (\beta)\end{cases}$
A_{2} forbidden asymptotically
$\psi_{\text {nuc.space }} \equiv \psi_{0}=c_{A_{1}} \psi^{A_{1}}+c_{E} \psi^{E}$

$$
7+\mathrm{p} 77 \longrightarrow\left\{\begin{array}{l}
7+\mathrm{p} 77 \\
\mathrm{o77}+7
\end{array}\right.
$$

A_{1} forbidden asymptotically

$$
\psi_{\text {nuc.space }} \equiv \psi_{\mathrm{p}}=c_{A_{2}} \psi^{A_{2}}+c_{E} \psi^{E}
$$

Due to nonzero spin, possibility of ortho-para transitions

Spin-weighted cross sections:

Results: ${ }^{17} \mathrm{O}+\mathrm{o} / \mathrm{p}^{17} \mathrm{O}^{17} \mathrm{O}$: pure state-to-state ICSs

Ortho-para conversion

$$
7+o 77(j=0) \rightarrow 7+p 77\left(j^{\prime} \text { odd }\right)
$$

- Each ICS has a threshold (slightly endothermic processes)
- General decrease with E_{c} after first threshold increase

Para-ortho conversion
$7+p 77(j=1) \rightarrow 7+o 77\left(j^{\prime}\right.$ even $)$

- No threshold for the first ($j^{\prime}=0$, red) ICS (exothermicity)
- Second ($j^{\prime}=2$, green) ICS presents a threshold and dominates for all range of low energies

Results: ${ }^{17} \mathrm{O}+{ }^{17} \mathrm{O}^{17} \mathrm{O}$: spin averaged ICSs

$$
7+\mathrm{o} 77(j=0) \longrightarrow \begin{cases}7+\mathrm{o} 77\left(j^{\prime}\right) & \left(\sigma_{j=0 \rightarrow j^{\prime}}^{\mathrm{oo}}\right) \\ \mathrm{p} 77\left(j^{\prime}\right)+7 & \left(\sigma_{j=0 \rightarrow j^{\prime}}^{\mathrm{op}}\right)\end{cases}
$$

$\sigma_{j \rightarrow j^{\prime}}=\left\{\begin{array}{l}\sigma_{j, j^{\prime}}^{\text {oo }}=\frac{4}{9} \sigma_{j \rightarrow j^{\prime}}^{A_{1}}+\frac{5}{9} \sigma_{j \rightarrow j^{\prime}}^{E} \\ \sigma_{j \rightarrow j^{\prime}}^{\mathrm{op}}=\frac{5}{9} \sigma_{j \rightarrow j^{\prime}}^{E}\left[j^{\prime} \text { odd }\right] .\end{array}\right.$
Parity conserving reaction huge compared to to o-p transition, because of inclusion of elastic process

$$
7+\mathrm{p} 77(j=1) \longrightarrow \begin{cases}7+\mathrm{p} 77\left(j^{\prime}\right) & \left(\sigma_{j=1 \rightarrow j^{\prime}}^{\mathrm{pp}}\right) \\ \mathrm{o} 77\left(j^{\prime}\right)+7 & \left(\sigma_{j=1 \rightarrow j^{\prime}}^{\mathrm{po}}\right)\end{cases}
$$

$$
\sigma_{j \rightarrow j^{\prime}}=\left\{\begin{array}{l}
\sigma_{j \rightarrow j^{\prime}}^{\mathrm{pp}}=\frac{2}{9} \sigma_{j \rightarrow j^{\prime}}^{A_{2}}+\frac{7}{9} \sigma_{j \rightarrow j^{\prime}}^{E}\left[j^{\prime} \text { odd }\right] \\
\sigma_{j \rightarrow j^{\prime}}^{\mathrm{po}}=\frac{7}{9} \sigma_{j \rightarrow j^{\prime}}^{E}\left[j^{\prime} \text { even }\right] .
\end{array}\right.
$$

Global o-p or p-o process comparable with nonelastic one at low energy

Summary

- Oxygen isotope ${ }^{17} 0$ exchange reactions:
- Low temperature reactive collision rates for $7+66,6+o / p 77$
- Comparison with more "standard" reactions $8+66$ and $6+88$
- Huge difference in behavior between 88 and o/p77
- Low temperature reactive collision cross sections for $7+o / p 77$
- Proper spin-symmetry rates for ortho-para conversion of ${ }^{17} \mathrm{O}_{2}$
- Propensity for parity conservation of rot. levels ("elastic" scattering)

Outlook

- Same exchange processes in the presence of a static magnetic field:
- Effect on electronic speen (low field)
- Effect on nuclear spin of ${ }^{17} \mathrm{O}$ (strong field)

Acknowledgments

\square Pascal Honvault
\square Maxence Lepers
Richard Dawes
\square Vladimir Tyuterev

Thanks for your attention!

