26ème Congrès Général de la SFP

ID de Contribution: 509

Type: Contribution orale

LOW TEMPERATURE QUANTUM DYNAMICS OF OXYGEN EXCHANGE REACTIONS INVOLVING 170

mardi 4 juillet 2023 09:04 (17 minutes)

Context: Molecular oxygen is peculiar of Earth's atmosphere and the precursor of stratospheric ozone which absorbs most of the Sun UV radiations. Oxygen isotopic analysis allows one to trace back the origin of elements constituting Solar system primitive materials, like meteorites and comets. O₂ and O₃ formed from ¹⁶O isotope are dominant, thereby giving a reference for any process involving oxygen. A strong enrichment, about 10% greater than that following usual fractionation rules, of O₃ in both ¹⁸O and ¹⁷O, the so-called mass-independent fractionation (MIF), has first been observed decades ago in primitive chondrites and stratosphere [1,2], and since reproduced in laboratory experiments [3]. However, its proper quantum mechanical explanation has never been attained. Ozone is the stabilized form of the oxygen exchange reaction O + O₂ \rightarrow O₃^{*} \rightarrow O₂ + O intermediate O₃^{*}. The study of the latter with ¹⁷O-enriched isotopomers of O₂ is thus important for a full understanding of heavy O₃ formation. The ³⁴O₂ species has already been investigated in collision with He [4], in the context of buffer gas cooling and subsequent magnetic trapping allowed by its S = 1 electronic spin. Furthermore, the nonzero nuclear spin of ¹⁷O, I = 5/2, makes it a suitable candidate for further study at ultra-low temperatures, in the presence of a magnetic field.

Methodology: We have used a high quality ab initio potential energy surface [5] to perform computationally intensive full quantum investigation of the dynamics of this scattering process.

Results: We shall present cross sections and rate constants [6,7,8] for the ${}^{17}O + {}^{32}O_2$, ${}^{16}O + op{}^{34}O_2$ and ${}^{17}O + op{}^{34}O_2$ reactions. We will discuss observed isotope effects, and the importance of symmetry in relation to nuclear spin and ortho-para conversions [8].

References:

[1] R. N. Clayton, L. Grossman, L. K. Mayeda 'A component of primitive nuclear composition in carbonaceous meteorites' Science 182 (1973) 485

[2] K. Mauersberger 'Measurement of heavy ozone in the stratosphere'GRL 8 (1981) 935-937

[3] M. H. Thiemens, J. E. Heidenreich, III 'The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications' Science 219 (1983) 1073-1075

[4] J. Bohn 'Cold collisions of O2 with He'PRA 62 (2000) 032701

[5] R. Dawes, P. Lolur, A. Li, B. Jiang, H. Guo 'Communication : An accurate global potential energy surface for the ground electronic state of ozone'JCP 139 (2013) 201103

[6] G. Guillon, P. Honvault, 'Quantum dynamics of the ¹⁷O + ³²O2 collision process'JPCA 120 (2016) 8254

[7] G. Guillon, P. Honvault, 'Quantum dynamics of 16 O in collision with otho- and para- ${}^{17}O^{17}O'CPL$ 689 (2017) 62

[8] G. Guillon, M. Lepers, P. Honvault 'Quantum dynamics of ¹⁷O in collision with otho- and para-¹⁷O¹⁷O' PRA 102 (2020) 012810

Affiliation de l'auteur principal

Lab. ICB UMR6303 CNRS/Université de Bourgogne

Auteur principal: GUILLON, Gregoire (ICB UMR6303 CNRS/uB)

Co-auteurs: LEPERS, Maxence (ICB - Université de Bourgogne); HONVAULT, Pascal (ICB - Université de Bourgogne)

Orateur: GUILLON, Gregoire (ICB UMR6303 CNRS/uB)

Classification de Session: Mini-colloques: MC05 Physico-chimie des environnements atomiques et moléculaires froids et ultra froids

Classification de thématique: MC5 Physico-chimie des environnements atomiques et moléculaires froids et ultra froids