



### Microrheology and structural quantification of blood clots as a diagnosis of hypercoagulability

<u>Nathalie Westbrook</u>, Julien Moreau Biophotonics group, Lab. Charles Fabry in collaboration with

Jean-Marc Allain, Adrien Seripa, Lab. Mécanique des Solides, Ecole Polytechnique, IPP

Chloé James, Laura Wolff-Trombini, Univ. Bordeaux, INSERM, Biology of cardiovascular diseases & CHU Bordeaux Lab. Hématologie

Hubert Galinat, CHU Brest, Service Hématologie Biologique

L. Wolff-Trombini et al, accepted in Biomedical Optics Express (30 june 2023)

150 ans SFP, 5 july 2023



#### What is thrombosis?

- Clot formed in a blood vessel
- 2 types of thrombosis :
  - Arterial (major)
  - Venous



Berthomier, T. and al. *Adv. Sci. Technol. Eng. Syst. J.* **2**, 48–59 (2017).

- Complications : recurrence and pulmonary embolism
- In France : 50 000 to 100 000 phlebitis, 40 000 P. Emb / year
- Thromboembolic events: 3<sup>rd</sup> cause of cardiovascular deaths

**Problem** : 50% of recurrent deep venous thrombosis events remain unexplained



### **Blood clot and coagulation**

#### Physiological hemostasis and its regulation



- → We start from poor platelet plasma (PPP) = no red or white blood cells nor platelets but with coagulation factors (non activated proteins)
- → We initiate coagulation by adding tissue factor, calcium and phospholipids + microbeads for our optical microrheology



## **Passive microrheology**

Microbeads are incorporated in the blood clot and their brownian motion under thermal fluctuations is measured using an optical tweezer setup when the reflection of a laser beam focused on the bead gives access very precisely to the position of the bead.





- Brownian motion recorded with high spatial and temporal resolution (0.1 to 10kHz)
- => Local viscoelastic properties of the blood clot as a function of frequency



Same shape for all the curves => characterization with one measurement = storage modulus at 30 rad/s



#### **Measurement protocol**

Choice of microrheology parameters to define a reference measurement on normal clots



Choice of bead diameter: 6 µm => less dispersion in the measurement

Choice of bead height (distance to coverslip): 40 to 60µm => less variation with height



# **Confocal imaging of fibrin**

Correlation of mechanical measurements with confocal images of fibrin network (fibrinogen labeled with Alexa488)



Confocal image of a fibrin network. Control from a human pool. FVIII=100% Scale bar 25µm. Zoom on an area with a bead (scale bar 10µm).



Hemophilic patient FVIII=1,1%

Example of confocal image of a looser fibrin network

Quantification of confocal images: fiber density and length

#### CHARLES Characterization of induced hypercoagulability FABRY



Blood clots supplemented at 400% with one specific coagulation factor (Factor VIII) are more rigid than control clots

1 point=1 clot (4 beads)



#### **Perspectives**

# → Characterize blood clots from patients with coagulation pathology (thrombotic or hemophilic)



 $\rightarrow$  Compact and automatized prototype transportable to the hospital