Molecular Doping of Graphene: **Towards a Low-Field Quantum Hall Standard**

Aurélien Theret^{1,2}, François Couëdo¹, Mathieu Taupin¹, Adrien Michon³, Chiara Mastropasqua³, Dominique Mailly², Félicien Schopfer¹

¹Laboratoire national de métrologie et d'Essais (LNE), Trappes, France

²Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, France

³Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications (CRHEA), Valbonne, France

Quantization Criteria for QHE:

•
$$\frac{\Delta E}{K_b T} \gg 1$$

 $\mu B \gg 1$

- Low dissipation ($R_{xx} \leq 100 \ \mu\Omega$)
- High Quality Contacts $(R_{c} < 10 \Omega)$

Graphene on silicon carbide (SiC) for metrology

Compatible with table-top portable and cryomagnetic systems for broader dissemination:

- Lower Magnetic Field (1 3T)
- Higher Temperature (> 4, 2 K)
- Increased Current (> 100 μA)

Requirements for relaxed conditions operation:

- High Mobility ($\geq 10\ 000\ cm^2$. V. s ¹)
- Controlled Carrier Density $(0,5 2.10^{11} cm^2)$
- Reproducible Growth Methods

Graphene on SiC limitations: Electron carrier density $(n \sim 10^{13} \ cm^{-2})$ mobility $(\mu \sim 1\ 000 - 2000\ cm^2.V^{-1}.s^{-1})$. **Challenge: Density and mobility** control at low temperature

Carrier density and mobility control: Molecular Doping

