

VERS UNE PLATEFORME MATHS POUR LES SCIENCES (MaPS)

Sophie Jequier, MCF Physique - Université de Bordeaux

Aude Caussarieu, Didacticienne des sciences

UNISCIEL : UNIVERSITÉ DES SCIENCES EN LIGNE

- Service InterUniversitaire de l'université de Lille
- Regroupant 52 membres sur le territoire français
 - 39 universités,
 - 13 écoles ou instituts.
- Dont les missions sont :
 - La production pédagogique pour favoriser l'enseignement,
 - La promotion de l'usage du numérique dans l'enseignement,
 - L'accompagnement des établissements dans le développement de la FOAD,
 - L'aide à l'orientation,
 - La promotion de la culture scientifique,
 - La diffusion des ressources à la francophonie.

MATHÉMATIQUES ET ÉTUDES SCIENTIFIQUES

- La maîtrise des mathématiques est un prédicteur de la réussite des étudiants en sciences.
- La difficulté d'un étudiant à utiliser un outil mathématique dans un contexte de physique est fortement corrélée à la non-maitrise de ce savoir faire dans un contexte de mathématiques .

Meltzer (2002)

- Les réformes du lycée jouent un rôle dans la baisse du niveau en mathsoutils chez des étudiants qui veulent poursuivre des études scientifiques :
 - Diminution des volumes horaires de mathématiques au collège-lycée,
 - Des spécialités maths moins choisies ou en recul avec l'option maths complémentaires.
- Besoins hétérogènes « massifs » à gérer sans augmenter les heures maquette mais en articulation avec l'offre de formation.

=> Solution numérique

TESTS ET DISPOSITIFS D'ENTRÉE DANS LE SUPÉRIEUR

En Belgique:

- Passeport pour le bac (U Namur)
- DiagnoSciences (U Louvain)
- Tests d'entrée Haute Ecole Vinci

En France

- Site Faq2Sciences
- Tests dans les établissements
- Site QCM SFP
- Site Maths Pour les Sciences (M4S)
- Dispositifs PrescriSciences

Objectifs des tests en ligne:

- repérer les difficultés des étudiants (positionnement),
- les aider à se remettre à niveau (remédiation),
- leur permettre de s'entraîner.

Gueudet and Vandebrouck (2022)

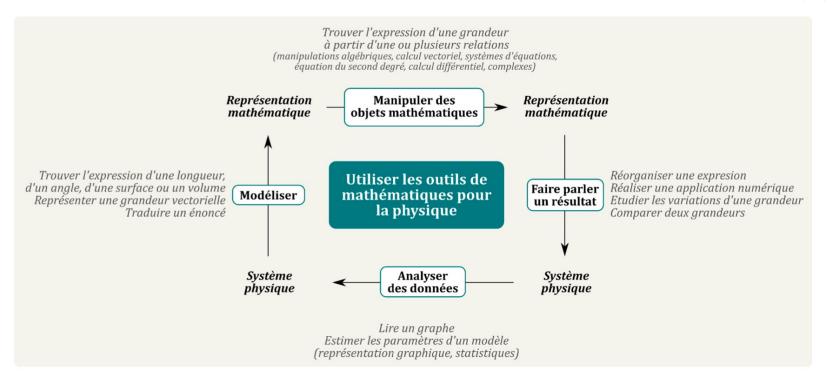
MATHÉMATIQUES ET MATHS POUR LA PHYSIQUE

Des maths pour mieux réussir en physique : le projet M4S et ses constats

Caussarieu (2022)

- Des différences qui engendrent « deux » mathématiques :
 - Des notations différentes => les coordonnées d'un vecteur
 - Des objets différents => des variables avec un sens implicite
 - Des usages différents d'un même outil => la dérivation
- Pour mieux cibler la tâche visée et l'outil mathématique sollicité: approche praxéologique (théorie anthropologique du didactique, Chevallard, 1991)

L'élève ou l'étudiant dans ses études doit :


- > réaliser une tâche,
- > avec une technique,
- > justifiée par un outil (technologie dans le vocabulaire de Chevallard),
- > se basant sur une théorie.

RÉFÉRENTIEL DE SAVOIR FAIRE MATHÉMATIQUES

Cadre de la modélisation en physique-chimie:

Redish et Bing (2009)

51 outils, 14 types de tâches, 4 domaines de mise en œuvre des savoir faire.

TYPE D'ACTIVITÉ COGNITIVE ET NIVEAU DE MAITRISE

- Type d'activité cognitive (Bloom, 1956)
- Niveau de maîtrise du savoir (Webb, 1997)

Caussarieu (2021)

Une classification des questions à deux dimensions

	Restituer une connaissance	Donner du sens	Appliquer une connaissance
En surface	Connaissance centrale dans le cours	Changement de registre Explicitation du vocabulaire Représentation de concept	Technique identifiée dans une situation simple
Intermédiaire	Connaissance périphérique dans le cours	Raisonnement Utilisation d'une technique Exploiter la situation	Raisonnement en plusieurs étapes pour une technique Informations pertinentes à extraire d'un énoncé Situation complexe
En profondeur			Technique au cours d'un raisonnement mobilisant une ou plusieurs autres techniques.

INTERDÉPENDANCE ET TEMPORALITÉ DANS L'APPRENTISSAGE

- Au cours de leurs études, élèves et étudiants vont être confrontés à des situations d'apprentissages différentes des savoir-faire (SF):
 - deux SF vus à peu près en même temps;
 - deux SF vus à des années différentes;
 - un SF vu en maths mais utilisé plus tard en physique;
 - un SF vu en physique mais pas encore vu en maths;
 - un saut de maîtrise du SF non accompagné.
- Plusieurs années peuvent être nécessaires pour assimiler un savoir-faire.
 - => Un savoir-faire doit être défini en fonction du **niveau d'enseignement** d'origine en tenant compte des autres disciplines où il est mobilisé et des prérequis qu'il nécessite.
 - => Quelle solution numérique pour tester ces savoir faire?

PIX, ECRI+ ET MaPS

PIX :


- Plateforme en ligne pour évaluer, développer, et certifier ses compétences numériques.
- Structure à but non lucratif constituée en Groupement d'intérêt réunissant différents acteurs publics engagés dans les domaines de l'éducation et de la formation.

■ ECRI + :

- Plateforme basée sur l'algorithme PIX pour le français écrit.
- Projet NCU porté par l'Université Ouverte des Humanités (Unisciel partenaire technique).

MaPS:

- Plateforme basée sur l'algorithme PIX pour les mathématiques pour les sciences (MaPS) prenant en compte les outils maths depuis le collège jusqu'à l'université.
- Porté en interne par Unisciel.

ETAT D'AVANCEMENT DE LA PLATEFORME

- Réalisation en cours avec:
 - Référentiel et questions (1400) intégrés,
 - Tests utilisateurs étudiants réalisés,
 - Recueil des besoins enseignants (en cours).
- Livraison (intermédiaire) pour la rentrée 2023 dans un partenariat avec des membres Unisciel avec comme objectifs :
 - Expérimenter avec des cohortes d'étudiants maîtrisées pour identifier les besoins de cohérence avec les outils et dispositifs de l'établissement (Moodle, prérentrée,...) et les attentes enseignants et institutions;
 - Co-financer de l'évolution technique de la plateforme et de son intégration dans les plateformes pédagogiques des établissements;
 - Participer à l'enrichissement des contenus de la plateforme;
 - Participer à la diffusion de la plateforme dans le cadre institutionnel.

LES PERSPECTIVES

Court terme (2023/2024):

- 3 établissements partenaires déclarés: Aix-Marseille Université, Université de Bordeaux, Université de Paris-Saclay;
- Recueil des usages pour amélioration de la plateforme;
- Intégration de nouvelles ressources.

Moyen terme:

- Plateforme stabilisée pour les usages en sciences expérimentales;
- Ouverture à tous les membres Unisciel intéressés;
- Développement de plateformes pour les autres disciplines ou champ professionnel.

Plus long terme:

- Ouverture à tout public;
- Observatoire national du niveau de maîtrise des savoir faire mathématiques.

MERCI DE VOTRE ATTENTION

Pour vos questions sur :

Unisciel, le projet, la plateforme : sophie.jequier@u-bordeaux.fr

L'approche didactique : aude@caussarieu.fr

REFERENCES

- Meltzer D.E. (2002), The relationship between mathematics prepaaration and conceptuel learning gains in physics: a possible « hidden » variable in diagnostic pretest score, American Journal of Physics, 70(12), 1259-1268. https://doi.org/10.1119/1.1514215
- Gueudet, G., & Vandebrouck, F. (2022). Transition secondaire-supérieur: Ce que nous apprend la recherche en didactique des mathématiques. Épijournal de Didactique et Epistémologie des Mathématiques pour l'Enseignement Supérieur, Episciences. https://epidemes.episciences.org/9715
- Caussarieu A. (2022) Quelles mathématiques en physique? Une approche praxéologique.
 Rendez-vous en didactique 2022, May 2022, Paris, France. halshs-03756502
- Chevallard Y. (1991), La transposition didactique—Du savoir savant au savoir enseigné (2ème édition). La pensée sauvage.
- Redish E. F., & Bing, T. J. (2009). Using Math in Physics: Warrants and Epistemological Frames. Physics community and cooperation, 2.
- Caussarieu A. (2021) Classer des exercices de mathématiques pour la physique une approche didac- tique orientée par la conception de ressources. 11ème rencontres de l'ARDIST, Mar 2021, Bruxelles, Belgique. halshs-03756485
- Bloom, 1956 Bloom, B. S. (1956). Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. David McKay Co Inc.
- Webb, N. L. (1997). Criteria for Alignment of Expectations and assessments in Mathematics and Science Education.

