

Magnetism and spin squeezing with arrays of Rydberg atoms

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

Congrès SFP, july 6th 2023

The team (atom-tweezers-io.org)

Theory: N. Yao (Harvard), A. Laüchli (Lausanne), T. Roscilde (Lyon), H-P Büchler (Stuttgart), D. Chang (ICFO), F. Robicheaux (Perdew)

Gély

*** île**de**France**

anr®

The team (atom-tweezers-io.org)

Theory: N. Yao (Harvard), A. Laüchli (Lausanne), T. Roscilde (Lyon), H-P Büchler (Stuttgart), D. Chang (ICFO), F. Robicheaux (Perdew)

Gély

anr®

The team (atom-tweezers-io.org)

*** île**de**France**

anr

Goal: Understand ensembles of interacting quantum particles

superfluidity

superconductivity

magnetism

neutron star

Goal: Understand ensembles of interacting quantum particles

superfluidity superconductivity magnetism neutron star Open questions: Phase diagram, dynamics (hard for N>40...) Topology, disorder, entanglement,...

Goal: Understand ensembles of interacting quantum particles

superfluidity superconductivity magnetism neutron star
Open questions: Phase diagram, dynamics (hard for N>40...)
Topology, disorder, entanglement,...

R.P. Feynman

Use experimental control to

Implement many-body Hamiltonians (including "mathematical" ones...)

Larger tunability than « real » systems

Goal: Understand ensembles of interacting quantum particles

superfluidity superconductivity magnetism neutron star
Open questions: Phase diagram, dynamics (hard for N>40...)
Topology, disorder, entanglement,...

R.P. Feynman

Use experimental control to

Implement many-body Hamiltonians (including "mathematical" ones...)

Larger **tunability** than « real » systems

Quantum Simulation

Many-body physics with synthetic quantum systems

Tunable arrays of individual Rydberg atoms

 $r\sim\lambda$ arXiv:2207.10361 (Nat. Phys. 2023)

 $r \sim 10 \,\mu{
m m}$

 $r \sim \lambda$

I. Ferrier-Barbut

Light-induced interactions in arrays of Dy atoms

Many-body physics with synthetic quantum systems

Tunable arrays of individual Rydberg atoms

 $r\sim\lambda$ arXiv:2207.10361 (Nat. Phys. 2023)

 $r \sim 10 \,\mu \mathrm{m}$

 $r \sim \lambda$

I. Ferrier-Barbut

Light-induced interactions in arrays of Dy atoms

Many-body physics with synthetic quantum systems

 $r \sim 10 \,\mu\mathrm{m}$

 $r\sim\lambda$ arXiv:2207.10361 (Nat. Phys. 2023)

 $r \sim \lambda$

Light-induced interactions in arrays of Dy atoms

Spring 2023!! (a) 10µm Single Dy atoms in tweezers

I. Ferrier-Barbut

Assembled arrays of tweezers (~200 at.)

Assembled arrays of tweezers (~200 at.)

5 µm

Assembled arrays of tweezers

Fluorescence: single shot!!

Schymik, PRApplied 2021

Schymik, PRA 2022

> 320 atoms assembled> 35% probability

Assembled arrays of tweezers

(Averaged)

Assembled arrays of tweezers (~200 at.)

5 µm

Addressable!!

Lukin, Zoller 2000 Saffman, RMP 2010 Browaeys, Nat Phys 2020

Lukin, Zoller 2000 Saffman, RMP 2010 Browaeys, Nat Phys 2020

Browaeys, Nat Phys 2020

Time (μ s)

Barredo PRL (2015), de Léséleuc, PRL (2017)

1. Dipolar XY magnet with resonant dipole interactions

2. Spin squeezing using dipolar interaction

Outline

1. Dipolar XY magnet with resonant dipole interactions

C. Chen et al., Nature 2023

2. Spin squeezing using dipolar interaction

N. Yao + M. Zaletel

J. S. M. Bintz

V. Liu J. Hauschild S. Chatterjee (Berkeley)

A. Läuchli + M. Schuler (Innsbruck)

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

Schauss *et al.*, Nature 2013 Scholl *et al.*, Nature 2021 Ebadi *et al.*, Nature 2021 Choi *et al.*, Nature 2023...

x Square (1/2) Tr

y

Triangle (1/3)

Ising model

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

y

Ground state (1/2, 1/3...) = *classical* Néel configurations

x Square (1/2) Triangle (1/3)

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Ising model

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

y

Ground state (1/2, 1/3...) = *classical* Néel configurations

x Square (1/2) Triangle (1/3)

 $\langle i,j\rangle$

 $\hat{H} = \sum J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$

Competing order along x / along y

$$\left\| \begin{array}{c} \stackrel{\rightarrow}{\underset{\leftarrow}{x \rightarrow x}} \\ \stackrel{\leftarrow}{\underset{\leftarrow}{x \rightarrow x}} \\ \stackrel{\leftarrow}{\underset{\rightarrow}{x \rightarrow x}} \\ \stackrel{\uparrow}{\underset{\rightarrow}{y \rightarrow y}} \\ \stackrel{\uparrow}{\underset{\rightarrow}{y \rightarrow y}} \\ \stackrel{\bullet}{\underset{\rightarrow}{y \rightarrow y}}$$
Ising model

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

y

Ground state (1/2, 1/3...) = *classical* Néel configurations

x Square (1/2) Triangle (1/3)

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Metal organic compound

$Cu(DCOO)_24D_2O$

Dalla Piazza, Nat. Phys. 2017

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

y

Ground state (1/2, 1/3...) = *classical* Néel configurations

x Square (1/2) Triangle (1/3)

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Metal organic compound

Atoms in lattices

$Cu(DCOO)_24D_2O$

Dalla Piazza, Nat. Phys. 2017

Greiner, Bloch, Esslinger, Kuhr...

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

 \overline{x} Square (1/2)

y

Triangle (1/3)

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Metal organic compound

Atoms in lattices

$Cu(DCOO)_24D_2O$

Dalla Piazza, Nat. Phys. 2017

Greiner, Bloch, Esslinger, Kuhr...

Heisenberg:
$$\hat{H} = \sum_{i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

 \overline{x} Square (1/2)

 \underline{y}

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Metal organic compound

Atoms in lattices

$Cu(DCOO)_24D_2O$

Dalla Piazza, Nat. Phys. 2017

A+↓
★ Spin removal ▼
↑

Greiner, Bloch, Esslinger, Kuhr...

Heisenberg:
$$\hat{H} = \sum_{i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Short-range interactions

Dipolar interactions $\Rightarrow 1/R^3$

Polar molecules

KRb, NaRb Bakr, Ye, Ni...

Magnetic atoms

Cr, Er, Dy Laburthe, Ferlaino, Pfau, Ketterle, Modugno... Defects in solid

Dipolar interactions $\Rightarrow 1/R^3$

Polar molecules

KRb, NaRb Bakr, Ye, Ni...

Magnetic atoms

Cr, Er, Dy Laburthe, Ferlaino, Pfau, Ketterle, Modugno... Defects in solid

Introduces frustration!!

```
AFM: J < 0
```


VS.

Dipolar interactions $\Rightarrow 1/R^3$

Expectations for ground state:

 $T=0\Rightarrow$ Long Range order for FM & AFM Bruno, PRL 2001 $\langle \sigma^x_i\sigma^x_j
angle
eq 0, |i-j| \to \infty$

Dipolar interactions $\Rightarrow 1/R^3$

Expectations for ground state:

 $T = 0 \Rightarrow$ Long Range order for FM & AFM Bruno, PRL 2001 $T \neq 0 \Rightarrow$ LRO for FM $\langle \sigma_i^x \sigma_j^x \rangle \neq 0, |i - j| \rightarrow \infty$ No LRO for AFM (frustration destabilizes)

Dipolar interactions $\Rightarrow 1/R^3$

Expectations for ground state:

 $T = 0 \Rightarrow \text{Long Range order for FM \& AFM} \qquad \text{Bruno, PRL 2001}$ $T \neq 0 \Rightarrow \text{LRO for FM} \qquad \langle \sigma_i^x \sigma_j^x \rangle \neq 0, |i - j| \rightarrow \infty$ No LRO for AFM (frustration destabilizes)

Long-range order in 2D - XY magnets never observed...

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \frac{\delta_i \sigma_i^z}{h} \int_{i < j} \frac{\delta_i \sigma_i^z}{h} ds ds$$

1. Prepare a classical Néel state along z: checkerboard pattern

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \frac{\delta_i \sigma_i^z}{h} \int_{i < j} \frac{\delta_i \sigma_i^z}{h} ds ds$$

1. Prepare a classical Néel state along z: checkerboard pattern

apply local light-shifts

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

1. Prepare a classical Néel state along z: checkerboard pattern

 $M_z = 0$ apply local light-shifts
+
microwaves

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

2. Adiabatically decrease δ to "melt" into XY AFM

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

2. Adiabatically decrease δ to "melt" into XY AFM

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

2. Adiabatically decrease δ to "melt" into XY FM

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

 $(J/h \approx 0.8 \text{ MHz})$ staggered

2. Adiabatically decrease δ to "melt" into XY FM

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \frac{\delta_i \sigma_i^z}{h} \int_{i < j} \frac{\delta_i \sigma_i^z}{h} ds ds$$

2. Adiabatically decrease δ to "melt" into XY AFM / FM

10 x 10 = 100 atoms

Antiferromagnet: LRO destabilized by imperfections

Antiferromagnet: LRO destabilized by imperfections

Important role $1/r^3$ of interaction

Antiferromagnet: LRO destabilized by imperfections

Also: ions 1D arXiv:2211.01275 Important role $1/r^3$ of interaction

Sbierski *et al.,* arXiv:2305.03673

1. Dipolar XY magnet with resonant dipole interactions

2. Spin squeezing using dipolar interaction

N. Yao M. Block B. Ye (Harvard)

G. Bornet *et al.*, arXiv:2303.08053

T. Roscilde

F. Mezzacapo (Lyon)

Evolve: $|\psi(t)\rangle = e^{-iH_{\rm XY}t/\hbar} |\psi(0)\rangle$

Evolve:

t (µs)

0.0 1

0.2

t (µs)

0.4

0.6

Evolve:

$$\left|\psi(t)\right\rangle = e^{-iH_{\rm XY}t/\hbar} \left|\psi(0)\right\rangle$$

Interactions depolarize... Generation entanglement?

Collective spin:
$$\hat{J}_{\alpha} = \sum_{i=1}^{N} \hat{\sigma}_{i}^{\alpha}$$

Metrological gain in Ramsey interf.: $\delta \theta_{sq} = \xi_R^2 \, \delta \theta_{SQL}$ w

Wineland, PRA 1994
A detour: spin squeezing in OAT versus dipolar model

Metrological gain in Ramsey interf.: $\delta \theta_{sq} = \xi_R^2 \, \delta \theta_{SQL}$ v

Wineland, PRA 1994

Dipolar XY: "same" structure
$$H_{XY} = J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y)$$

A detour: spin squeezing in OAT versus dipolar model

Metrological gain in Ramsey interf.: $\delta \theta_{sq} = \xi_R^2 \, \delta \theta_{SQL}$

Wineland, PRA 1994

Dipolar XY: "same" structure
$$H_{XY} = J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y)$$

Is 1/r³ long-range enough to generate squeezing? If yes, does it scale with N?

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Prediction: yes! M.P.A Jones & T. Pohl, PRL (2014) A-M. Rey, PRL (2020) T. Roscilde, PRL **129**, 150503 (2022) N. Yao, arXiv:2301.09636

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Rotor / spin wave theory

Roscilde et al., arXiv:2302.0927, 2303.00380

$$H_{\rm XY} \approx E_0 + \frac{(\hat{J}_z)^2}{2I_N} + \sum_{\mathbf{q}\neq 0} \hbar \omega_{\mathbf{q}} \, a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}$$

Collective spin:

$$\hat{J}_{\alpha} = \sum_{i=1}^{N} \hat{\sigma}_{i}^{\alpha}$$

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Rotor / spin wave theory

Roscilde et al., arXiv:2302.0927, 2303.00380

N

$$H_{XY} \approx E_0 + \frac{(\hat{J}_z)^2}{2I_N} + \sum_{\mathbf{q}\neq 0} \hbar \omega_{\mathbf{q}} a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}$$

"Rotor", $\mathbf{q} = 0$
 $I_N \sim \frac{N}{J_0}$
 $J_0 = \frac{Ja^{\alpha}}{N} \sum_{i\neq j} (\pm 1)^{|i-j|} \frac{1}{r_{ij}^{\alpha}}$
AFM

Collective spin:

 $\hat{J}_{\alpha} = \sum \hat{\sigma}_{i}^{\alpha}$

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Rotor / spin wave theory

Roscilde et al., arXiv:2302.0927, 2303.00380

N

$$H_{XY} \approx E_0 + \frac{(\hat{J}_z)^2}{2I_N} + \sum_{\mathbf{q}\neq 0} \hbar \omega_{\mathbf{q}} a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \quad \text{Spin wave}$$

"Rotor", $\mathbf{q} = 0$
 $I_N \sim \frac{N}{J_0}$
 $J_0 = \frac{Ja^{\alpha}}{N} \sum_{i\neq j} (\underbrace{\pm 1}_{i\neq j})^{|i-j|} \frac{1}{r_{ij}^{\alpha}}$
AFM

Collective spin:

$$\hat{J}_{\alpha} = \sum_{i=1}^{N} \hat{\sigma}_{i}^{\alpha}$$

Is $1/r^3$ long-range enough to generate squeezing?

$$H_{\rm XY} \sim \sum_{i < j} \frac{1}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \sim \hat{\mathbf{J}}^2 - \hat{J}_z^2$$

Experimental observations of spin squeezing

Pezzé et al., RMP 2018

differ. photocurrent atoms by 1/16 2/16 Nat Comm 2018

Polzik (1999), Giacobino, Mitchell, Nascimbene...

Cavity QED + cold atoms (OAT)

Bose-Einstein condensate (OAT)

Oberthaler, Treutlein, Klempt, Reichel, You...

Nature

2010

Ion crystal (~OAT)

Vuletic, Kasevich, Thompson (JILA), Je, Schleier-Smith...

Bollinger, Science 2016

Hot / cold atomic vapors

6 x 6 atoms *t* = 300 ns

Squeezing !

Squeezing !

Measuring the dispersion relation

FM: $\omega(\mathbf{q}) \propto \sqrt{\mathbf{q}}$ AFM: $\omega(\mathbf{q}) \propto \mathbf{q}$

H. P. Büchler PRL 2012

Preliminary

Measuring the dispersion relation

FM:
$$\omega(\mathbf{q}) \propto \sqrt{\mathbf{q}}$$

AFM: $\omega(\mathbf{q}) \propto \mathbf{q}$

H. P. Büchler PRL 2012

Measuring the dispersion relation

M:
$$\omega(\mathbf{q}) \propto \sqrt{\mathbf{q}}$$

AFM: $\omega(\mathbf{q})\propto\mathbf{q}$

H. P. Büchler PRL 2012

Floquet engineering XYZ model: MW + XY

Measuring the dispersion relation

M:
$$\omega(\mathbf{q}) \propto \sqrt{\mathbf{q}}$$

AFM: $\omega(\mathbf{q}) \propto \mathbf{q}$

H. P. Büchler PRL 2012

Floquet engineering XYZ model: MW + XY

Spin-orbit coupling

Frac. Chern ins. Weber, et al. PRXQ 2022

