

European Research Council Established by the European Commission

Josephson waveguides: a new platform for quantum optics

Congrès général de la Société Française de Physique

Nicolas Roch, Institut Néel, Grenoble, France

The "TWPA team"

Martina Luca Esposito Planat VOJ SILENT WAVES

Arpit Ranadive

D. Basko (LPPMC, Grenoble), A. Metelmann (KIT, Germany), T. Meunier/ M. Urdampilleta (Inst. Néel, Grenoble), E. Collin (Inst. Néel, Grenoble), I. Pop (KIT, Germany), P. Forn Diaz (Barcelona), R. Vijay (TIFR, India), K. Murch (Washington University, USA), P. Leek (Oxford, UK), M. Stern (Bar Ilan, Israël), Joe Aumentado/Florent Lecocq (NIST, USA), MADMAX Collaboration, GraHal Collaboration, QUAX Collaboration, ARPEJ Collaboration (ESPCI, TRT, C2N)

Gwenael Le Gal

Giulio Cappelli

Collaborations

Quantum optics and cQED

Vacuum squeezed states Single microwave photons

M. Castellanos-Beltran, et al. Nat. Phys. (2008)

Can we go beyond the cavity limit?

50 100 150 Time (ns) Schrödinger Cats

A. Houck, et al. Nature (2007)

B. Vlastakis et al. Science (2013)

Josephson waveguides: fabrication

Near quantum limited Traveling Waves Parametric Amplifiers

Outline

Vacuum two-mode squeezing in TWPAs

Josephson waveguides: challenge

Exemples of high impedance Josephson waveguides: Kuzmin et al., Nat. Phys. (2019), Puertas-Martinez et al., npj Q. Inf. (2019) 6

Josephson waveguides: fabrication recipe

Wafer thickness: 275 µm

Dielectric thickness: 30 nm Wafer thickness: 275 µm

Top-ground: 400 nm Dielectric: 30 nm

Wafer: 275 µm

Z_c 1kOhms to 50 Ohms

Cooling down the circuit

1st amplifier: Josephson waveguide

Dilution fridge

Sample

20 mK

700 mK 4K 20K 100K

Josephson waveguides: fabrication

Near quantum limited Traveling Waves Parametric Amplifiers

Outline

Vacuum two-mode squeezing in TWPAs

Use-case: ultra low noise amplification

Probe out

Very low energy (quantum) systems

Probe: few photons

Use-case: ultra low noise amplification

Very low energy (quantum) systems

Probe: few photons

Several quantum systems or frequency difficult to predict

Need high amplification, low noise AND large bandwidth

Ultra low noise amplification: applications

Superconducting Qubits

Dark matter detection

Spin Qubits

Electromechanical Circuits

Q-limited ESR

Astrophysics detectors

Four wave mixing

Traveling wave parametric amplification

Medium length Interaction time \propto Wave velocity

Dissipationless Nonlinear Medium (DNM)

 A_{in}^{p}

Resonant vs Traveling-wave

✓ Low Noise x Narrow bandwidth

Traveling wave parametric amplification $A_{\rm in}^{\rm p} \bigwedge A_{\rm out}^{\rm p} A_{\rm out}^{\rm p}$

 $\tilde{P} = \epsilon_0 [\chi^{(1)} \tilde{E} + \chi^{(2)} \tilde{E}^2 + \chi^{(3)} \tilde{E}^3 + \dots]$

Dissipationless Nonlinear Medium (DNM)

$A_{\rm in}^{\rm s}$ $A_{\rm out}^{\rm s}$ $A_{\rm in}^{\rm i}$ $A_{\rm out}^{\rm i}$

$$\tilde{E} \sim E_0 e^{ikx}$$

Traveling wave parametric amplification

Josephson Meta-material

First demonstration: B. H. Eom et al., Nat. Phys. (2012), C. Macklin et al. Science (2015)

Traveling Wave Parametric Amplifier vs Resonant Parametric Amplifier

Traveling Wave Parametric Amplifier: phase matching challenge

Quantum limited amplifiers: comparison

Non-linearity engineering

Quantum limited amplifiers: noise performances

Standard Quantum Limit (SQL)

$$T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$$

C. M. Caves, Phys. Rev. D (1982)

Quantum limited amplifiers: noise performances

Standard Quantum Limit (SQL)

$$T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$$

C. M. Caves, Phys. Rev. D (1982)

Noise simulations based on: Houde et al., Phys. Rev. Applied (2019)

Josephson waveguides: fabrication

Near quantum limited Traveling Waves Parametric Amplifiers

Outline

Vacuum two-mode squeezing in TWPAs

Microwave quantum optics with TWPAs

Not only amplification....

Microwave quantum optics with TWPAs

Vacuum noise squeezing: R. Movshovich et al., Phys. Rev. Lett. (1990) Vacuum noise squeezing: Castellanos-Beltran et al., Nat. Phys. (2008) Two-mode squeezing: Eichler et al., PRL (2011) Storage and entanglement: Flurin et al., PRL (2015) Improving qubit state measurement: Eddins et al., PRL (2018) Enhancing dark matter search: Backes et al., Nature (2021)

(Narrow-band) Resonant Josephson Parametric Amplifiers

Microwave quantum optics with TWPAs

Can we generate squeezing in TWPAs?

Pros

Broadband nature

Taking advantage of the 1D propagation Spurious non-linear processes

Cons

Losses in TWPAs

Two-mode squeezing: device

4-wave mixing

 $H_{\text{int}} = \gamma a_s^{\dagger} a_i^{\dagger} a_p a_p + \text{h.c.}$

Two-mode squeezing generation

Reconstruction/tomography technique: Bozyigit et al., Nat. Phys. (2010), Da Silva et al., Phys. Rev. A (2010)

Two-mode squeezing generation

Reconstruction/tomography technique: Bozyigit et al., Nat. Phys. (2010), Da Silva et al., Phys. Rev. A (2010)

4-wave mixing

$$H_{\text{int}} = \gamma \left| A_p \right|^2 a_s^{\dagger} a_i^{\dagger} + \text{h.c.}$$

Two-mode squeezing generation

Reconstruction/tomography technique: Bozyigit et al., Nat. Phys. (2010), Da Silva et al., Phys. Rev. A (2010)

Phase-space histogram distribution

Demonstration of two-mode squeezing in TWPAs

See also: Perelshtein et al., Phys. Rev. Applied (2022), Qiu et al., Nat. Phys. (2023)

 $\hat{x}_{+} = (\hat{x}_{\mathrm{s}} + \hat{x}_{\mathrm{i}})$

$$\hat{p}_{+} = (\hat{p}_{\mathrm{s}} + \hat{p}_{\mathrm{i}})$$

$$S_{\rm q+} = 10 \log \left(\frac{\langle x_+^2 \rangle}{0.5} \right)$$

Demonstration of two-mode squeezing in TWPAs

See also: Perelshtein et al., Phys. Rev. Applied (2022), Qiu et al., Nat. Phys. (2023)

Conclusion & Perspectives

Josephson Traveling Wave Parametric Amplifiers: fabrication L. Planat et al. Phys. Rev. Applied (2019) Patent n° FR1901767

Josephson TWPA: phase matching L. Planat et al. PRX (2020) A. Ranadive, et al. Nat. Commun. (2022)

> Two-mode vacuum squeezing M. Esposito, et al. PRL (2022)

Josephson TWPA: perspectives M. Esposito, et al. APL (2021)

Bringing quantum technologies to market

Non-reciprocal Josephson TWPA

Multi-mode entanglement in Josephson waveguides

Superconducting Quantum Circuits Olivier Buisson Quentin Ficheux Wiebke Hasch Cécile Naud Arpit Ranadive Thibault Charpentier Dorian Fraudet Samuel Cailleaux Giulio Cappelli Cyril Mori Wael Ardati Nicolo Crescini Gwenael Le-Gal Shelender Kumar Erika Borsje Hekking Vishnu Suresh Francesca Desposito

Join Us! nicolas.roch@neel.cnrs.fr

Use-case 1: qubit read-out

Use-case 1: qubit read-out

TWPA ON $F_{ m overlap} \sim 98\%$

Use-case 2: ultra-low power measurements

Photons out

 $I(\omega)$ [a.u.]

