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Abstract
Experiments on growing cells can be carried out either in bulk (population experiments) or in confined geometries that constrain the growth of the
colony (e.g. single-lineage experiments). These two setups generate different statistics, as cells with high reproductive success are over-represented in
the population, while no such effect occurs in single-lineage experiments. This bias has thus been proposed as a model-independent measure of fitness
and selection [1]. We study this bias, akin to fluctuation theorems in stochastic thermodynamics, and derive a series of results analogous to Jarzynski
equality, the second law, and fluctuation-dissipation theorems far from equilibrium, which establish general principles of evolution.

Population experiments [1]
Forward Backward Backward sampling: ωback(l) = 1/N(t).

→ Over-represents lineages that divided more than average

Forward sampling: ωfor(l) = 2−K(l)/N0.

→ Cancels the effect of selection of successful lineages
→ Reproduces statistics from single lineage experiments

Single-lineage experiments [2]

Flucutation theorem and consequences [4]
The forward-backward (or lineage-population) bias is expressed as a fluctuation theorem:

pback(K, t) = pfor(K, t) eK ln 2−tΛt with Λt =
1
t

ln
N(t)
N0

: population growth rate

Jarzynski equality

Λt =
1
t

ln⟨2K⟩for

Population growth rate estimator from the statis-
tics of L independent single lineages [3]:
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Second law

t
⟨K⟩back

≤ ln 2
Λt

≤ t
⟨K⟩for

When t → ∞ (+ dynamical conditions), inequality
between mean generation times and population dou-
bling time :

⟨τ⟩back ≤ Td ≤ ⟨τ⟩for

Cells divide faster in populations!

Fluctuation-response relations for the selection strength [5]

The strength of selection is bounded by the fluctuations in fitness (σ(ht)) and by the χ2 distance:

ΠS ≤ min
[
σfor(ht)χ

2(pback; pfor), σback(ht)χ
2(pfor; pback)

]
Case of equallity in the limit of small selection:

ΠS ∼ t σ2(ht) (// Fisher’s theorem of natural selection)

A lower bound depending on the fluctuations in fitness landscape is also derived:

ΠS ≥ LS (σfor(ht), σback(ht))

Fitness and selection [1]
Fitness landscape: captures correlations be-
tween a cell trait s and the number of divisions:

ht(s) = Λt +
1
t

ln
[

pback(s, t)
pfor(s, t)

]
Strength of selection: change in mean fitness
between the ensembles with (backward) and
without (forward) selection:

ΠS = ⟨ht(s)⟩back − ⟨ht(s)⟩for

Lineage statistics in presence of cell death [7]
If some lineages die before time t:

p⋆for(s, t) = pfor(s, t|survival)

we separate the effects:

h⋆t (s) =
1
t

ln
[

pback(s, t)
p⋆for(s, t)

]
: Fitness landscape

h†
t (s) =

1
t

ln
[

p⋆for(s, t)
pfor(s, t)

]
: Survivor bias

Disentangling fitness and survival
in antibiotics data [6]:

Inferring the division rate r(s) and death
rate γ(s) (for slowly fluctuating traits):
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