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Abstract

Experiments on growing cells can be carried out either in bulk (population experiments) or in confined geometries that constrain the growth of the
colony (e.g. single-lineage experiments). These two setups generate different statistics, as cells with high reproductive success are over-represented in
the population, while no such effect occurs in single-lineage experiments. This bias has thus been proposed as a model-independent measure of fitness
and selection [1]. We study this bias, akin to fluctuation theorems in stochastic thermodynamics, and derive a series of results analogous to Jarzynski
equality, the second law, and fluctuation-dissipation theorems far from equilibrium, which establish general principles of evolution.

Single-lineage experiments [2] Population experiments [1]
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— Over-represents lineages that divided more than average

Forward sampling: wy., (1) = 2~ K /Np.
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— Cancels the effect of selection of successful lineages
— Reproduces statistics from single lineage experiments

Flucutation theorem and consequences [4]

The forward-backward (or lineage-population) bias is expressed as a fluctuation theorem:
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Fitness and selection [1] Fluctuation-response relations for the selection strength [5]

Fitness landscape: captures correlations be- | | The strength of selection is bounded by the fluctuations in fitness (o (h;)) and by the x* distance:
tween a cell trait s and the number of divisions:
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Case of equallity in the limit of small selection:

Strength of selection: change in mean fitness , | , |
between the ensembles with (backward) and [Ig ~to“(ht) (// Fisher’s theorem of natural selection)

without (forward) selection:

Ils = <ht (S)>back — <ht(5)>for

A lower bound depending on the fluctuations in fitness landscape is also derived:

[Is > Ls(0tor(t), Oback (ht))

Lineage statistics in presence of cell death [7]

If some lineages die before time t: Disentangling fitness and survival Inferring the division rate r(s) and death
! . , in antibiotics data [6]: rate y(s) (for slowly fluctuating traits):
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