African Lidar and Spectral Imaging Activities

150th Anniversary of French Physical Society, 4th July 2023, Paris *Mikkel Brydegaard*, Senior Lecturer, Dept. Physics, Lund University

> "norsk elektro optikk..

Bamako, Mali 2011

Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing

Mikkel Brydegaard^{1,2,3,*}, Aboma Merdasa¹, Alem Gebru^{1,2}, Hiran Jayaweera^{1,4}, and Sune Svanberg^{1,5} Applied Spectroscopy 0(0) 1–14 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0003702815620564 asp.sagepub.com

Scheimpflug lidar method and instrument: Infinite focal depth with large aperture.

with blinking atmospheric particles – application to interacting flying insects " *Progress In Electromagnetics Research,* Vol. 147, 141-151, 2014

Made in Africa

Malaria mosquito rush-hour in Tanzania 25.000 Observations/Hour

Mikkel Brydegaard^{1,2,3}*

Annular eclipse, 1 Sep. Tanzania 2016

SCIENCE ADVANCES | RESEARCH ARTICLE

ECOLOGY

Lidar reveals activity anomaly of malaria vectors during pan-African eclipse

Mikkel Brydegaard^{1,2,3,4}*, Samuel Jansson^{2,3}, Elin Malmqvist^{2,3}, Yeromin P. Mlacha^{5,6,7}, Alem Gebru^{2,3,4}, Fredros Okumu^{5,8,9}, Gerry F. Killeen^{5,10,11}, Carsten Kirkeby^{4,12}*

Are mosquitoes active during eclipses?

- Recycling light and efficiency of illumination in hyperspectral push broom imaging vs hyperspectral lidar
- In push broom P/N_{pix} transilluminate each pixel footprint
- In hyperspectral lidar P transilluminate all pixel foot prints
- The increase efficiency can be used for:
 - kHz sample rates
 - Very low reflectances (e.g. clean air)
 - Weak interactions such as fluorescence

Rapid prototyping with 3D printed sandwich architecture 1 week from Raytracing to physical prototype

Range: 3-100 m, Spectral range: 400-800 nm, 70 effective bands, Power: 1W@405nm, Speed: 120 Hz, Weight: 2 Kgs, total material cost: 3 kEur

Hyperspectral 3D scanning of vegetation structure

E JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 4, JULY/AUGUST 2023

Remote Vegetation Diagnostics in Ghana with a Hyperspectral Fluorescence Lidar

Rabbi Boateng, Andrew Atiogbe Huzortey[®], Yatana Adolphe Gbogbo, Assoumou saint-doria Yamoa[®], Jérémie T. Zoueu, Mikkel Brydegaard[®], Benjamin Anderson[®], and Hampus Månefjord[®]

Spectra from local crops, Cape Coast, Ghana

Fluorescent hyperspectral scanning of vegetation structure in day light.

Cape Coast, Ghana 2022

Do different species display distinct daily activity pattern?

Quantitative assessment of distinct species activity patterns

Measuring species richness *in situ*

- Sometimes we don't need to know what is detected, we simply want to know the number of species present in a dataset
- Elbow test, Information criteria, Silhouette, Calinski Harabasz, Davies Bouldin


```
BENOIT K. KOUAKOU,<sup>1,*</sup> SAMUEL JANSSON,<sup>2,3</sup> MIKKEL
BRYDEGAARD,<sup>2,3</sup> AND JEREMIE T. ZOUEU<sup>1</sup>
```


Comparative study at four Ivorian sites

Comparative lidar assessment of richness at 4 sites

- ✓ Day-to-day assessment are consistent
- ✓ Sites show distinct richness and abundance
- ✓ Richness is not necessarily increasing with abundance

Example of signal diversity at rich site (58.499 observations - 63 clusters)

Assessment of diversity and diurnal activity patterns in the Ivorian virgin forest Taï

Automated elevation scanning

Taï virgin forest, Ivory Coast 2023

Côte d'Ivoire

Authors: Hampus Månefjord^{1*}, Assoumou saint-doria Yamoa², Yatana Adolphe Gbogbo², Lauro Müller¹, Anna Runemark³, Benoit Kouassi Kouakou⁴, Rabbi Boateng⁵, Andrew Atiogbe Huzortey⁵, Mikkel Brydegaard^{1,2,6,7}, Jérémie T. Zoueu⁴, Benjamin Anderson⁵, Meng Li¹

Ivory Coast, 2023

Characterisation of light scattering from biological targets. Multispectral imaging by LED <u>multiplexing</u>

A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains

Hampus Månefjord,^{1,a)} ⁽⁶⁾ Meng Li,¹ Christian Brackmann,¹ Nina Reistad,^{1,2} ⁽⁶⁾ Anna Runemark,³ Jadranka Rota,⁴ Benjamin Anderson,⁵ ⁽⁶⁾ Jeremie T. Zoueu,⁶ ⁽⁶⁾ Aboma Merdasa,^{1,7} and Mikkel Brydegaard^{1,3,8,9}

A 7-dimensional optical instrument for biophotonic investigation, Approximatly 10⁷ unique pictures of the same object

BIOSPACE – Bio Imaging Optical Spectral Polarimetric G:Copol-Depol Angular Compact Equipment

Yaw angle Aspect angle Scatter angle Polarization angle

Characterized wing secularity and resonance can be associated with lidar echoes.

Multi purpose instrument for gaining understanding and searching for contrast in multiple domains UV VIS NIR

Eupeodes corollae, Ultra Violet, Depolarized

Eupeodes corollae, True Colors, Depolarized R: 630 nm B: 430 nm

Eupeodes corollae, Infra Red, Copolarized

R: 940 nm

G: 810 nm

5 mm

Eupeodes corollae, Infra Red, Depolarized

R: 940 nm B: 630 nm

R: 430 nm G: 405 nm B: 365 nm

5 mm

5 mm

Thanks to all my student and collaborators!

Thanks for your attention!

Find us on YouTube!

Biophotonics Lund

@biophotonicslund653 14 prenumeranter 10

You are most welcome to learn more about bio

SHORTS

HEM VIDEOR SPELLISTO

Shorts

40 visningar

BIOSPACE in use 72 visningar

TERNATIONAL DEVELOPMEN COOPERATION AGENCY

Innovation Fund Denmark

"norsk elektro Swedish **optikk..** Research Council

European Research Counci Established by the European Commission

Bee gone, wasp nest