Recent Results from Penning-Trap Mass Measurements of Radionuclides

Michael Block

GSI Darmstadt Helmholtz-Institut Mainz Department Chemie, Universität Mainz

Acknowledgements

Slides for this talk were kindly provided by Ryan Ringle (MSU), Jonas Karthein (MIT), and Tommi Eronen (JYFL)

Contributions by the SHE physics groups @ GSI / HIM, by the SHIPTRAP collaboration, and by the GSI accelerator and technical departments are gratefully acknowledged!

Outline

- motivation
- techniques in Penning-trap mass spectrometry
- select results from recent mass measurements at different facilities
 - In mass measurements at ISOLTRAP
 - Zr mass measurements at LEBIT
 - mass spectrometry of heavy nuclei with SHIPTRAP

Mass differences reveal nuclear structure

nucleon-separation energies reflect changes in binding energy due to structure

neutron-separation energy

 $S_n(N,Z) = M(N,Z) - M(N-1,Z)$

proton-separation energy

 $S_{p}(N,Z) = M(N,Z) - M(N,Z-1)$

Mass differences reveal nuclear structure

- nuclear mass differences such as one/two-nucleon-separation energies reflect nuclear structure effects
- signatures of shell closures, pairing, and the onset of deformation
- comparison of data to nuclear models provides valuable information

Nucleon-Separation energies and nuclear structure

Example (Data from AME 2020):

- two-neutron separation energies for various elements for N=40-65
- shell closure at N=50

HELMHOLTZ

Helmholtz Institute Mainz

 region of deformed nuclei around N=60

UNIVERSITÄT

Exploring the Limits of the Nuclear Chart

- Prediction: about 7000 nuclides exist
- nucleon separation energies
 (masses) define drip lines
- Nuclear chart is shaped by nature of underlying forces

Nuclear Astrophysics

Einfluss Neutron-induzierter Reaktionen im r-Prozess

Impact of masses and (n,γ) -rates on the elemental abundances in r process can be studied by model predictions

Courtesv R.Reifarth

Masses

 (n,γ) -Rates

Direct Mass Measurement Techniques

Frequency-based mass measurements, mainly in Penning traps

cyclotron motion $\omega_c = qB/m$

L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233 G. Gabrielse, Int. J. Mass Spectr. 279, (2009) 107

Time-of-flight mass spectrometry, nowadays with MR-ToF

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

Penning Trap Mass Spectrometry

- confine ion with mass *m* and charge *q* by combination of homogenous *B* field and electrostatic quadrupole field in vacuum
- measurement of cyclotron frequency yields mass value
- magnetic field calibration by reference ions with well-known mass

Complementarity of Penning Traps

Production	ISOL TRAP	SHIP TRAP	JYFL TRAP	СРТ	LEBIT	TITAN	TRIGA TRAP	MATS	MLL TRAP
ISOL	X					X			
Fusion- Evaporation		X	X	X					X
Projectile Fragmentation					X			X	
induced fission			X				X		
spontaneous fission				X					X
Highly-charged ions						X			

Schematic of a Mass Spectrometer for In-flight Production

Typical Performance and Reach for Rare Isotopes

- required yield: ≈ few particles per hour (SHIPTRAP 1 / day)
- accessible half-life ≈10 ms stable
- relative mass uncertainty $\approx 10^{-8}$
 - for mass doublets and certain cases $\approx 10^{-9}$
- required number of ions for a measurement 5-10

Yield often not the limiting factor but contaminants / background

New Gold Standard in Penning-Trap Mass Spectrometry

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Phase-Imaging Ion-Cyclotron-Resonance Method (PI-ICR)

high-precision measurement of ion's (radial) frequency via phase measurement

- cool ions motions and remove unwanted by-products, e.g., nuclear isobars
- determine trap center
- prepare ions in radial motion at defined radius and let them orbit for defined time
- determine ion phase on detector

$$\phi + 2\pi n = 2\pi vt$$
 $\Delta v = \frac{\Delta \phi}{2\pi t} = \frac{\Delta R}{\pi t R}$

ISOLTRAP at **ISOLDE/CERN**

ISOLTRAP Setup

- First Penning trap at accelerator facility (Kluge et al.)
- Use wide range of beams provided by ISOLDE
- Major additions over time:
- RFQ cooler buncher to increase efficiency (R. Moore et al.)
- MR-ToF to remove isobars and measure short-lived nuclides not accessible by Penning trap

ISOLTRAP MR-ToF

For details on MR-ToF see e.g., R. Wolf *et al.*, IJMS 313, 8 (2012)

MR-ToFs in use at various facilities, GSI/FRS, RIKEN, CPT, JYFL, ...

- broadband time-of-flight mass spectra
- fast cycles (on the order of 10 ms)
- mass measurements with only few detected ions
- efficient isobar separator

Nuclear Structure Studies of In Isotopes

Production using LaC target and two-step laser ionization

- study short-range proton-neutron pairing near ¹⁰⁰Sn
- heaviest self-conjugate nucleus
- strongest beta decay
- Previously beta-decay studies, mostly at fragmentation facilities (GSI, RIKEN)
- mass measurements on In isotopes
 ^{99,100,101g,101m}In with ISOLTRAP

Mass measurements using two techniques

- ISOLDE beam dominated by contaminants SrF
- Using MR-ToF for isobar separations and mass measurement of ⁹⁹In
- Using Penning trap for cases where high-resolving power is required, e.g., to resolve isomers

M. Mougeot et al., Nature Phys. 17, 1099 (2021)

Determining the Isomer's Excitation Energy

Direct measurement of the nuclear excitation energy!

- ISOLTRAP results agree with results from CSRe and GSI/FRS ion catcher
- Precision improved by > factor 5

in even-N neutron-deficient indium isotopes:

close energy proximity between the $\pi g9/2$ and $\pi p1/2$ states with large spin difference give rise to long-lived isomeric states lying a few hundred keV above the ground state

requires high mass resolving power

M. Mougeot et al., Nature Phys. 17, 1099 (2021)

Combining ISOLTRAP Mass Values with Decay Data

- New mass value from ¹⁰⁰Sn derived from ISOLTRAP data **130 keV** more bound
- Downward trend in Δ_{2n} supports the doubly-magic character of 100Sn

HIM

HELMHOLTZ

Helmholtz Institute Mainz

UNIVERSITÄT

M. Mougeot et al., Nature Phys. 17, 1099 (2021)

Ab-Inito Theory

- ISOLTRAP + Hinke β
- ISOLTRAP + Lubos β
- *ab-initio* theory
- ISOLTRAP data combined with data from Lubos et al. does not agree with expected trends for doubly-magic nuclei

 Ab-initio theory reproduces well the trends in indium and tin based on data from ISOLTRAP and Hinke et al.

FRIB – Facility for Rare Isotope Beams World-Leading Next-generation Rare Isotope Beam Facility

Most recently, 35% of experiments used beams requiring gas stopping.

- FRIB will produce ~1000 NEW isotopes at useful rates (4500 available for study)
 - Higher-energy primary beams (200 MeV/ u for uranium)
 - Highest intensity rare isotope beams available anywhere
- Fast (~ 200 MeV/u), stopped (~ 30 keV), and re-accelerated (~ 6 MeV/u) beams available (requires gas stopping).

LEBIT Facility at FRIB

UNIVERSITÄT MAI

Ringle et al., Int. J. Mass Spectrom. 349, 87 (2013)

Courtesy R. Ringle

HELMHOLTZ

Helmholtz Institute Mainz

High-Precision Penning Trap Mass Measurements with LEBIT

Program Goals

- Measurements for nuclear structure, nuclear astrophysics, fundamental interactions and symmetry tests
- Recent Publications:
 - Mass measurement of doubly-magic ⁸⁰Zr
 - Nat. Phys. (2021)
 - Mass measurements of neutron-rich Sc refining N=32,34 shell closures
 - Phys. Rev. Lett 126 (2021) 042501
 - Mass measurements of ³⁶Ca, ⁴⁴V, and ⁶⁶As for fundamental interactions
 - Phys. Rev. C 103 (2021) 014323
 - Phys. Rev. C 101 (2020) 064309
 - Nuc. Phys. A 989 (2019) 201
 - Mass measurement of ⁶¹Zn to refine urca neutrino luminosities in accreted neutron stars
 - Phys. Rev. C 105 (2022) 025804
 - Offline Q-value measurements of exotic decays of ⁸⁹Sr, ¹³⁹Ba, and ¹³⁸La
 - Phys. Rev. C 100 (2019) 024309
 - Phys. Rev. C 100 (2019) 014308

Nuclear Structure Studies Around N=Z=40

LINIV/FRSITÄ

- N=Z line is a rich lab for p-n investigations
 - Protons and neutrons occupy same orbitals
 - Enhanced binding due to Wigner energy

Bentley & Frauendorf Phys. Rev. C 88, 014322 (2013)

- A region of very strong nuclear deformation
 - Among the most deformed ground-states in the nuclear chart
 - $-\beta_2 \approx 0.4$
- Lister PRL 59, 12 (1987), Llewellyn PRL 124, 152501 (2020)
- Possible deformed shell closure predicted at nucleon number 40

Nazarewicz et al. Nucl. Phys. A 435, 397 (1985)

- ⁸⁰Zr mass in AME20 is extrapolated
 - Experimental values not considered

Huang et al. Chin. Phys. C 45, 030002 (2021)

Helmholtz Institute Mainz

Z=20

Performed Mass Measurement of ⁸⁰Zr with LEBIT

Center of scan from AME16*

- Measured Mass Uncertainty for ⁸⁰Zr: 80 keV
- 80 ZrO⁺ rate at LEBIT \leq 1 ion per minute

Performed Mass Measurement of ⁸⁰Zr with LEBIT

Isotope	Ion	Ion Ref.	$ar{R}$	Mass Excess	$AME20^{23}$	Difference
80 Zr	$^{80}{\rm Zr}{}^{16}{\rm O}{}^+$	$^{85}\mathrm{Rb}^{+}$	1.12982901~(99)	-55 128 (80)	$-55517~(1500)^{\rm a}$	389 (1500)
81 Zr	$^{81}{ m Zr}^{2+}$	${}^{41}{ m K}^{+}$	0.98797108(13)	-57556(10)	-57524 (92)	-32 (93)
82 Zr	${}^{82}\mathrm{Zr}{}^{16}\mathrm{O}{}^+$	$^{87}\mathrm{Rb}^{+}$	1.126770338(31)	-63618.6 (2.5)	-63614.1 (1.6)	-4.5(3.0)
83 Zr	$^{83}{ m Zr}^{2+}$	${}^{41}{ m K}^{+}$	1.0122748297~(85)	-65 916.33 (65)	-65911.7~(6.4)	-4.7(6.5)
			1.1	. 9.4	1 1	

^a Experimental result based on one ⁸⁰Zr event²⁴, not included in the AME20.

- LEBIT mass value for ⁸⁰Zr significantly more bound
- Closer to some old data than to AME 2020
- Mass uncertainty could be further improved

- Bayesian Model Averaging
 - Theory and statistics team: R. Jain, S. A. Giuliani, W. Nazarewicz, L. Neufcourt
 - Statistical analysis of 11 global mass models
 »9 DFT models: SkM*, SkP, SLy4, SV-min, UNEDF0, UNEDF1, UNEDF2, D1M, and BCPM
 »HFB-24, FRDM2012
 - Mass models are constrained by experimental results, and used to make predictions and quantify uncertainties at data-scarce region around N=Z

Competition between deformation and p-n pairing must be explored further

Neufcourt et al. PRC 101, 044307 (2020) Neufcourt et al. PRC 101, 014319 (2020) Hamaker et al. Nat. Phys. (2021)

Superhevy Element Landscape

Superheavy elements owe existence to nuclear shell effects
Mass measurements give access to nuclear shell structure

SHIPTRAP Setup at GSI Darmstadt

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

SHIPTRAP Performance

Mass resolving power of $m/\delta m \approx 100,000$ in purification trap:

 \Rightarrow separation of isobars

Mass resolving power of $m/\delta m \approx 1,000,000$ in measurement trap:

 \Rightarrow separation of isomers

SHIPTRAP Results - Example ^{255(m)}Lr²⁺

- figure shows part of data taken in 10 hours
- 1200 ms phase-evolution time

- mass resolving power m/ Δ m $\approx 10^7$
- long-lived isomer with E^{*} ≈ 37 keV was resolved from ground state

LINIV/FRSITÄT

HIM

HELMHOLTZ

Helmholtz Institute Mainz

Mass measurements of Actinides and Transactinides

- O. Kaleja, F. Giacoppo et al., in preparation
- O. Kaleja, PhD thesis Uni Mainz 2020
- B. Andelic, PhD thesis Uni Groningen 2021
- E. Minaya Ramirez et al. Science 337, 1207 (2012)
- M. Block et al., Nature 463, 785 (2010)
- Y. Ito et al., Phys. Rev. Lett. 120, 152501 (2018)
- J. van de Laar et al., in preparation
- M. Eibach et al., Phys. Rev. C 89, 064318 (2014)

- first (direct) mass spectrometry beyond
 Z = 100
- measurements with rates of ≈ 0.00002/s and 5 detected ions in total
- rel. statistical mass uncertainty a few 10⁻⁹
- Mass resolving power up to $m/\Delta m = 11,000,000$
- unambiguous identification of low-lying isomers with tens of keV

Nuclear Shell effects from Separation Energies

neutron separation energies derived from masses and Q_{α} -values show signatures of nuclear shell effects at N = 152 and N = 162

Comparison of Results to Nuclear Models

- nuclear models reproduce the general trend relatively well
- absolute masses are sometimes off by up to 1 MeV
- mass differences may be described properly

Experiments with cooled and bunched ions at IGISOL

1. Cooler-buncher

2. MR-TOF

- Mass separation + spectrometry
- 3. JYFLTRAP
 - Mass separation + spectrometry
- 4. MORA
 - ²³Mg beta decay, beyond SM physics
- 5. RAPTOR
 - Hi-res laser re-ionization
- 6. Collinear laser spectroscopy
- 7. Post-trap decay spectroscopy

Courtesy T. Eronen

Recent mass measurements at JYFLTRAP

- Utilizing mostly the PI-ICR technique
- Fundamental physics
- Neutrino physics
- Astrophysics
- Nuclear structure

 $2\beta\beta$ Q-value of ⁹⁸Mo D. Nesterenko, L. Jokiniemi et al. Eur. Phys. J. A (2022) in press

¹⁵⁹Dy Q-value measurement Z. Ge et al. PRL **127**, 272301 (2021)

⁶⁷Fe and ^{69,70}Co masses, nuclear structure at N=70 and impact on r-process reaction rates L. Canete et al. Phys. Rev. C **101**, 041304(R) (2020)

Post-trap decay spectroscopy

- Trap-purified beams with mass resolving power > 10⁵
- Mostly of n-rich nuclei

Beta dELayEd Neutron (BELEN) detector

 136 Sb, one of the heaviest $\beta 2n$ emitters studied R. Caballero-Folch et al., PRC 98, 034310 (2018)

C. Delafosse et al. EPJA (2022) in print

Courtesy T. Eronen

Decay spectroscopy of the ⁸¹Ge ground state

Summary and Conclusions

- New techniques in Penning-trap mass spectrometry have
 - extended the reach of towards more exotic nuclei
 - boosted the precision to the 10⁻⁹ level
 - allowed the resolution of low-lying isomers
- complementary setups exploit different nuclear reactions so essentially radioisotopes from all elements are accessible
- variety of mass measurements for nuclear structure studies, nuclear astrophysics, and fundamental physics performed recently

Directions for future imporvements

- exploit next-generation RIB facilities to extend the reach toward more exotic nuclides
- extending mass measurements to rarer nuclides goes hand in hand with technical and methodological developments to
- improve sensitivity
- provide higher efficiency
- > obtain higher resolution that leads to higher precision

