Laser spectroscopy of radioactive isotopes

Recent highlights and trends in the field

Disclaimer

- Overview of laser spectroscopy activities ... an impossible task.
- I have picked some of the most recent results from different labs around the world.
- Many great results have been omitted!
- I hope they showcase the diversity of the science, the ever-expanding reach of the techniques, and the steady technical progress that is made worldwide
- (Even if I have left out the measurements closest to your heart, sorry! Let's discuss it in the question time after the talk!)

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, 52Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, ⁵²Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, ⁵²Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, ⁵²Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, ⁵²Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

Each facility brings its own challenges and advantages.

Steady improvements in technology and methodology have allowed for this vigorous exploration of the nuclear chart!

- Exotic (shape) phenomena
 - In-source laser spectroscopy of Hg, Bi
- Superheavy elements
- Test of nuclear interactions near shell closures
 - ⁵²K, ⁵²Ca (CRIS&COLLAPS, ISOLDE)
 - ³⁶Ca (BECOLA, NSCL)
 - In-source laser spectroscopy of Ag
- Precision measurements
 - Trapped-atom and ion experiments
- Beyond atomic spectroscopy
 - First spectroscopy of radioactive molecules

Each technique brings its own challenges and advantages.

In-source laser spectroscopy

Collinear laser spectroscopy

Methods tailed to specific cases

Steady improvements in technology and methodology have allowed for this vigorous exploration of the nuclear chart!

Laser spectroscopy: atom and nucleus

- Electromagnetic interaction between orbiting electrons and the nucleus
 - Isotopes have a finite size leading to isotope shifts
 → nuclear size
 - Orbiting charges and intrinsic nucleon moments lead to nuclear magnetic moments
 → valence configuration, wf purity
 - Charge can assume non-spherical charge distribution, and thus electric moments
 → deformation, shape, collectivity

Some orders of magnitude...

- Laser spectroscopy: excite the electron, monitor fluorescence/ion signal/... as you change the laser wavelength
- Transition wavelengths: 10-2000 nm Practically useful range: 200-1000 nm (with gaps and caveats)
- Isotope shifts, hyperfine splitting : MHz many GHz
- Transition @400 nm = 750 THz
- Laser spectroscopy inherits the *richness* of atomic structure, but any statements on efficiency, applicability, ... are thus *element-specific*.

Laser spectroscopy approaches

- In-source laser spectroscopy
 - Hot cavity
 - Gas cell
- Collinear laser spectroscopy
 - Fluorescence detection
 - Resonance ionization
 - Beta-NMR/collisional ionization/state-selective charge exchange/...
- Methods tailed to specific cases
 - Spectroscopy on trapped ion/atom
 - Techniques superseded by more modern ones... Worth reading up on!

Laser spectroscopy approaches

- In-source laser spectroscopy
 - Hot cavity
 - Gas cell
- Collinear laser spectroscopy
 - Fluorescence detection
 - Resonance ionization
 - Beta-NMR/collisional ionization/state-selective charge exchange/...
- Methods tailed to specific cases
 - Spectroscopy on trapped ion/atom
 - Techniques superseded by more modern ones... Worth reading up on!

Very efficient, low production rates Low resolution, limited element choice

A bit less efficient High resolution, wide element choice

More niche, specific cases/applications

Laser spectroscopy approaches

- In-source laser spectroscopy
 - Hot cavity
 - Gas cell
- Collinear laser spectroscopy
 - Fluorescence detection
 - Resonance ionization
 - Beta-NMR/collisional ionization/state-selective charge exchange/...
- Methods tailed to specific cases
 - Spectroscopy on trapped ion/atom
 - Techniques superseded by more modern ones... Worth reading up on!

What is possible?

Typically,

- Requirement: quality beam, low energy spread
- Production rates: as low as 0,01/s (in-source), 10/s (collinear (RIS))
- Resolution: as low as 10 MHz / precision ~ 100 kHz
- Most elements (exceptions: reactive non-metals top-right periodic table)

But: not always, at the same, time for every element!

Depends on beam purity, atomic structure, ...

Exotic (shape) phenomena

In-source laser spectroscopy

Exotic (shape) phenomena

- Exploration of nuclear structure far from stability sometimes brings unexpected phenomena
- Classic example: shapes in the Hg chain
 - Strong prolate deformation close to magic number Z=82!?
 - Sudden change in shape with single nucleon removal
 - 40+ years of developments culminating in...

Technique: in-source laser spectroscopy

- Radioactive isotopes produced through a nuclear reaction
- Target is heated to very high temperature (2000+ K) to enable diffusion towards the ion source region
- Multiple laser beams overlapped with atoms to stepwise excite and ionize
 - Spectroscopy in the ion source
 - Efficient! As high as 50%, typically a few %

Technique: in-source laser spectroscopy

- Linewidth: order of GHz
 - Source of broadening: Doppler effect due to high temperature
 - Spectral properties of the laser are matched to this linewidth
- lons transported to one of several possible detection stations
 - Decay spectroscopy: tag on characteristic radiation
 - Mass spectrometry: single out one isotope from other isobars using its mass
 - FLEXIBILITY! Tailor the detection to the isotope and beam at hand

Hg

Bi

KU LEUVEN

20

(a)

4

- Significant challenge for nuclear theory
- Magnetic moments are key to pin down nuclear configuration to aid the interpretation!

KU LEUVEN

Α

Wider context

- In-source laser spectroscopy provides the ultimate sensitivity, at the cost of resolution
 - **Exception:** in-gas jet laser spectroscopy promises high resolution with in-source efficiency
 - Take ions out of the high-pressure environment, cool through supersonic expansion
- Combination with ultra-selective and efficient detection techniques provides access to the most exotic isotopes
 - Make every ion count!

Development of nuclear interactions

Pushing methods to short lifetimes and low yields with collinear methods

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

23

KU LEUVEN

Study of the Ca region Spectroscopy of K

CRIS:

- Collinear = doppler-free
- RIS = versatile, efficient

Challenges:

- Large isobaric contamination
- Low yields
- Changing proton current
 → changing production and background

At mass 52:

- >10⁶ pps contamination
- 300 pps ⁵²K
- Beta-detection: remove stable contaminants

300 pps ⁵²K
< 1 day of data

- NNLO_{sat} and newer NNLO_{Go} may work better close to stability, but neutron-rich isotopes are not well modeled...
- What is missing still? We don't know.

KU LEUVEN

- NNLO_{sat} and newer NNLO_{Go} may work better close to stability, but neutron-rich isotopes are not well modeled...
- What is missing still? We don't know.

KU LEUVEN

- Where were these neutron-deficient cases measured?
- NSCL!
- ⁴⁰Ca (140 MeV/u) with Be foil
- Separator delivers beam into large-volume gas stopper cell
- Beam extracted, cooled, bunched
- Fluorescence collinear laser spectroscopy
- CRIS implementation underway!

Correct inclusion of continuum states is essential to predict good radii for proton-rich Ca

Development of nuclear interactions

Pushing methods to short lifetimes and low yields with in-source laser spectroscopy

Technique: in-source laser spectroscopy

- Push towards ⁹⁴Ag
- Crossing N=50 shell closure

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
		In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
50										
Projected reach of PI-ICR RIS					Optical measurement					

- Spectra obtained for ¹⁰⁴⁻⁹⁶Ag using ¹⁴N(⁹²Mo, 2pxn) Ag
- Totally background-free measurements
- Very sharp kink observed at N=50 beyond current DFT models. More data needed to refine error bar.

KU LEUVEN

Other recent studies near shell closures...

C. Gorges, L. V. Rodríguez, PRL **122**, 192502 (2019) T. Day Goodacre, PRL **126**, 032502 (2021)

- Spectra obtained for ¹⁰⁴⁻⁹⁶Ag using ¹⁴N(⁹²Mo, 2pxn) Ag
- Totally background-free measurements
- Very sharp kink observed at N=50 beyond current DFT models. More data needed to refine error bar.
- Data taken for ^{96,95}Ag!! using ⁴⁰Ca(^{58/60}Ni, pxn) Ag
- Isotope shift under analysis

- Spectra obtained for ¹⁰⁴⁻⁹⁶Ag using ¹⁴N(⁹²Mo, 2pxn) Ag
- Totally background-free measurements
- Very sharp kink observed at N=50 beyond current DFT models. More data needed to refine error bar.
- Data taken for ^{96,95}Ag!! using ⁴⁰Ca(^{58/60}Ni, pxn) Ag

Ν

Isotope shift under analysis

Lots more data to consider...

Silver (LISOL, JYU)

Indium, CRIS (ISOLDE)

A. R. Vernon et al, under review

KU LEUVEN

36

RAPTOR

- "RIS And Purification Traps for Optimised spectroscopy"
- Collinear laser resonance ionization spectroscopy
 - Collinear geometry at a few kV beam energy yields ~100 MHz linewidth
 - Laser resonance ionization provides
 high efficiency
 - Using Penning trap as ultimate background-removal device

First resonances!!

Precision measurements

Pushing beyond doppler-free optical spectroscopy

Scientific case

- Overview of hyperfine structure shown in the start was a simplification.
 - Hyperfine anomaly: ratio of atomic A and the nuclear moment is *not* a constant over a chain of isotopes
 - Reason: as the number of nucleons changes, so does the distribution of magnetization
 - Higher-order nuclear moments: there is physics *beyond* the quadrupole
- Measuring these effects typically requires precisions beyond the techniques shown so far
 - Hyperfine anomaly: measurable in *typically* the heavier cases (some exceptions)

Ο

Scientific case

- Hyperfine anomaly of a neutron halo?
 - The *charge radius* is only a measure of where the protons are
 - The *magnetization radius* is affected by the neutrons as well!
- ¹¹Be:
 - neutron halo
 - Has a simple atomic structure conducive to precision spectroscopy

Results – charge radius

- Precision collinear laser spectroscopy of Be
- Be is very light
 Atomic field shift factor is small

41

- Problem with collinear laser spectroscopy: exact velocity of the ions needs to be determined
- Accuracy and precision of 100 kHz is required

$$\nu_c = \nu_0 \cdot \gamma \cdot (1 + \beta),$$

$$\nu_a = \nu_0 \cdot \gamma \cdot (1 - \beta),$$

$$\nu_0^2 = \nu_c \cdot \nu_a$$

Results – charge radius

M. Žáková et al., J. Phys. G: Nucl. Part. Phys. 37 (2010) 055107 W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)

42

Results – hyperfine anomaly

Charge distribution

- Measuring hyperfine anomaly:
 - Measure the g-factor *independently* (not done yet!)
 - Measure the hyperfine A-constant

Technique

Technique

- Optical resonance is not scanned
- Radiofrequency excitation within ground-state hyperfine manifold
- Optical 'amplifier' of RF resonance
- Precision: ppb...
- Awaits independent g-factor measurement to evaluate HFA

Isotope	A [MHz]
⁷ Be	-742.772 28(43)°
⁹ Be	-625.008 837 048(10)
¹¹ Be	$-2677.302988(72)^{b}$

2030

2010

1990

1970

-650

-670

-690

-710

0

F =

Energy Shift [MHz]

A. Takamine et al., PRL **112**, 162502 (2014)

Conclusions

Some concluding remarks

- Nuclear chart has been successfully explored extensively with optical techniques
 - **Challenges remain**: the most exotic, most short-lived, challenging chemistry, complex or unknown atomic structure, ...
- Combination of RIS with ultra-selective and efficient detection techniques provides access to the most exotic isotopes
 - Collaboration between different specialists of different low energy beam techniques is *vital*
 - Use of diverse techniques is vital
- Exploration of different facilities opens new frontiers
 - e.g. IGISOL: access refractory isotopes
 - e.g. NSCL/FRIB: fragmentation reactions
 - e.g. GANIL/S3LEB
- With precision comes additional information!
 - Measurement schemes and setups tailored to specific goals are very worthwhile

Some concluding remarks

- Nuclear chart has been successfully explored extensively with optical techniques
 - **Challenges remain**: the most exotic, most short-lived, challenging chemistry, complex or unknown atomic structure, ...
- Combination of RIS with ultra-selective and efficient detection techniques provides access to the most exotic isotopes
 - Collaboration between different specialists of different low energy beam techniques is *vital*
 - Use of diverse techniques is vital
- Exploration of different facilities opens new frontiers
 - e.g. IGISOL: access refractory isotopes
 - e.g. NSCL/FRIB: fragmentation reactions
 - e.g. GANIL/S3LEB
- With precision comes additional information!
 - Measurement schemes and setups tailored to specific goals are very worthwhile

Innovation and developments takes many many years, but it is a worthwhile investment.

- In-source laser spectroscopy
- Collinear laser spectroscopy
- Methods tailed to specific cases

Beyond atomic spectroscopy

Laser spectroscopy of molecules

Scientific case

- Heavy radioactive molecules are potential probes for physics beyond the standard model
 - Parity and time reversal violating effects are significantly enhanced in molecules compared to atomic systems
 - (Octupole) deformation further enhances some of these effects
- Any precision experiment first needs reliable spectroscopic data.
- Note: molecular hyperfine structure also provided access to nuclear properties!
 - Route to explore nuclei with difficult chemistry?

Technique

- Collinear resonance ionization spectroscopy
 - Technical point: more flexibility in laser wavelengths, no wavelength-dependent detection
 - Use of multi-step laser excitation permits finding highly excited states as well

What's next in the region?

- Using **molecules** to access the nuclear quadrupole moment candidates: KI, KBr, KCI, KF measured spectra!
- LOI accepted by ISOLDE INTC for KF

Theoretical calculations are crucial for quadrupole moments

Similar precision for both atomic and molecular calculations

KU LEUVEN