

Precision measurement of the Fierz interference term *b* and of the Half-life of 6He

Physics Workshop ISOL-France

Mohamad KANAFANI March 2022 GANIL, Caen

- Context and motivations
- Experimental setup
- Half life measurement
- Summary and outlook

So far, the SM is our best description to what happens in the subatomic world, **BUT** it doesn't tell the whole story. There are plenty of questions that are not answered by the SM, which motivates us to search for proofs of new physics.

Two main Frontiers

High energy frontier

Direct observation of new particles

High precision frontier Look for traces and prints

Precision measurements in the nuclear β decay

Beta decay Hamiltonian: Respect Lorentz invariance

$$\begin{aligned} H_{\beta} &= \frac{G_F}{\sqrt{2}} V_{ud} \Big[(\bar{\psi}_p \psi_n) (\bar{\psi}_e (\mathcal{C}_S + \mathcal{C}'_S \gamma_5) \psi_\nu) \\ &+ (\bar{\psi}_p \gamma_\mu \psi_n) (\bar{\psi}_e \gamma^\mu (\mathcal{C}_V + \mathcal{C}'_V \gamma_5) \psi_\nu) \\ &+ \frac{1}{2} (\bar{\psi}_p \sigma_{\lambda\mu} \psi_n) (\bar{\psi}_e \sigma^{\lambda\mu} (\mathcal{C}_T + \mathcal{C}'_T \gamma_5) \psi_\nu) \\ &- (\bar{\psi}_p \gamma_\mu \gamma_5 \psi_n) (\bar{\psi}_e \gamma^\mu \gamma_5 (\mathcal{C}_A + \mathcal{C}'_A \gamma_5) \psi_\nu) \\ &+ (\bar{\psi}_p \gamma_5 \psi_n) (\bar{\psi}_e \gamma_5 (\mathcal{C}_P + \mathcal{C}'_P \gamma_5) \psi_\nu) \Big] \\ &+ h. c. \end{aligned}$$
There are thus 10 coupling constants!
$$\begin{aligned} & C_V = \mathcal{C}_V = 1 \\ & C_A = \mathcal{C}'_A = -1.25 \\ & C_S = \mathcal{C}'_S = \mathcal{C}_T = \mathcal{C}'_T = 0 \end{aligned}$$

Severijns N. (2004). Weak Interaction Studies by Precision Experiments in Nuclear Beta Decay. In J. Al-Khalili & E. Roeckl (Reds), The Euroschool Lectures on Physics with Exotic Beams, Vol. I (bll 339-381).

The Fierz interference term b is one of the observables that could be used to probe physics beyond the Standard Model.

Pure Gamow-teller transition

$$b_{GT} \propto \gamma Re\left(\frac{C_T + C_T'}{C_A}\right)$$

Ρ

$$b_F \propto \gamma Re\left(\frac{C_S + C'_S}{C_V}\right)$$

2.5

2.0

- depends linearly on the tensor and scalar coupling constants
- Predicted to be zero in the standard model

It can be measured precisely by studying the shape of the beta energy spectrum:

$$N(E) \propto (1+\eta)pE(E-E_0)^2 \left(1+\frac{m}{E}b\right)$$

Low energies
Corrections term Phase space

$$N(E) \propto (1+\eta)pE(E-E_0)^2 \left(1+\frac{m}{E}b\right)$$

Low energies

$$N(E) \propto (1+\eta)pE(E-E_0)^2 \left(1+\frac{m}{E}b\right)$$

Low energies

$$N(E) \propto (1+\eta)pE(E-E_0)^2 \left(1+\frac{m}{E}b\right)$$

Low energies
Beta kinetic energy (MeV)

b-STILED : **b-S**earch for **T**ensor Interactions in nucLear bEta Decay

- b_{GT} for ⁶He decay with $\Delta b_{GT} = 10^{-3}$
 - Convenient half-life ~0.8sec
 - Relatively large endpoint ~3.5MeV
 - Pure GT transition and thus exclusively sensitive to tensor currents
 - Can be produced with a high production rate @GANIL
 - Corrections are known with high precision

Phase I: 2 experiments with a goal of $\Delta b_{GT} = 4 \times 10^{-3}$:

- Low energy experiment
- High energy experiment

The ultimate setup will be used for the second phase.

Phoswich detector

Pulses discrimination

Q_{fast}/Q_{tot} vs Q_{tot} for one run of the low energy experiment

March 15, 2022

Low energy experiment

May 2021 @GANIL

3 sets of measurements:

- 1) Cycles length
- 2) PMs polarization voltages
- 3) Beam intensity

All the following analysis was done offline.

Typical cycle:

- 2.5 sec of implantation
- 12 sec of acquisition

Each event was recorded with a time stamp and an energy signal => High precision measurement of the half-life of ⁶He.

Energy calibration

A very accurate energy calibration is required to control any baseline or gain variation.

The evolution of the count rate within a

Distribution of the signal to BKG ratio for all the cycles of 1 set of measurements

The gain and baseline variations depends on the count rate variations

Energy calibration

We used the position of the 59.54 keV gammas of the ²⁴¹Am to form a correction model that compensate for the gain and baseline variations.

Difference of ~1.5% between the beginning and the end of the cycle.

Study the potential systematic effects:

- Dead time
- Pile-ups
- Gain shifts
- Baseline shifts

This offline study is possible due to the time and charge stamped data.

For a selected energy threshold, the detected decay function is the following:

$$N_{det}(t) = N_0 e^{-t/\tau} \left[P_{th}^{sing} + P_{Pup}(t) \times \left(P_{th}^{Pup} - P_{th}^{sing} \right) \right]$$

 P_{th}^{sing} : Probability for a single event to be above the energy threshold P_{th}^{Pup} : Probability for a pile-up event to be above the energy threshold

 $P_{Pup}(t)$: Probability of having a pile-up event

 $P_{Pup}(t) = N_0 e^{-t/\tau} \times 306 ns$ — Depends on the count rate

$$P_{th}^{sing} < P_{th}^{Pup}$$

Gain correction effect

For 600 keV we have about 1 ms difference for the gain correction

Results

	Set (1)	Set (2)	Set (3)
$T_{1/2}$	807.50	807.25	807.23
Stat. error	0.31	0.33	0.43
Gain shift	0.75	0.77	0.78
Baseline shift	0.09	0.04	0.05
Pile-up shift	0.12	0.25	0.14
total shift	0.96	1.06	0.97
Gain error	0.06	0.10	0.06
Baseline error	0.03	0.02	0.09
Pile-up error	< 0.01	< 0.01	< 0.01
Total syst. error	0.07	0.11	0.11

$$T_{1/2} = 807.35 \pm 0.20_{stat} \pm 0.11_{syst} ms$$

Our result is in agreement with the last and most accurate value, but is larger by 1.5 σ

A. Knecht, Phys. Rev. Lett. 108, 122502 (2012).

Summary:

- The gain and baseline corrections are crucial for measuring the half life with a precision higher of 10⁻³ sec.
- Our preliminary results are in agreement with the latest values and have a similar total uncertainty with the latest one.

Outlook:

- Finish the analysis for the half life measurement and publish the results.
- Start the analysis for the extraction of the Fierz term.

Thank you for your attention !

The 60 KeV peak position

Baseline position

Corrections model

baseline_V1 graph

16300 channel channel 16250 $P_0 + P_1 e^{-t/\tau}$ 16200 16150 For both the gain and 16100 $P_0 + P_1 e^{-t/\tau}$ baseline correction 16050 model, P_0 and P_1 is a 16000 function of SNR. 15950 12 10 12 8 14 8 10 14 t_cycle t_cycle P0V1_60keV_graph P1V1_60keV_graph 군 15960 £ 300 P_0 and P_1 variation 290 15950 280 against the SNR 270 15940 260 15930 250 240 15920 230 220 18

peak_60kev_V1 graph

S/N

S/N

Experimental setup

Backgrounds

- Coincidence events in both detectors
- Single events in detector 1
- Single events in detector 2

2 detectors that work like one

Baseline correction effect

With BL correction 0.80715 Systematic uncertainty on the gain correction 0.8071 0.80705 0.807 0.80695 $T_{1/2}(sec)$ 0.8069 0.80685 • 0.8068 0.80675 Without BL correction 0.8067 0.80665 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Threshold energy (keV)

Source	$\Delta \boldsymbol{b}_{\boldsymbol{GT}}$
Nuclear charge radius of 6Li	4.6×10^{-5}
End-point energy of the transition	1.8×10^{-4}
Weak magnetism form factor	5.7×10^{-4}
Induced tensor form factor	1.9×10^{-5}
Total theoretical uncertainty	6.0×10 ⁻⁴