Different uses for FPI to support laser spectroscopy measurements by

Alejandro Ortiz Cortés

ISOLFrance Workshop IV

Outline

- Introduction
- Air-spaced etalon
 - Motivation
 - Characterization
 - Offline measurement
- SFPI for relative wavelength measurement
 - Relative wavelength measurements
 - Comparison with WS7
- Summary

Introduction

To perform accurate measurements we need:

- Scan the laser wavelength (without affecting other experimental parameters i.e. laser power)
- Measure the wavelengths steps with good resolution

Introduction

- Exploration of two new uses of Fabry-Perot Interferometer (FPI) on laser spectroscopy
 - 1) Air-spaced etalon

Motivation: Maintain power stable during long frequency scans

University of Jyväskylä

2) Wavelength measurements with SFPI

Motivation: Reduce costs for narrowband wavelength measurements

FPI as Air-spaced etalon

• An etalon is a frequency-selective element made out of two planeparallel partially reflective surfaces.

Air-spaced etalon: Alter the wavelength by changing the distance between the mirrors

Air-spaced etalon – Power vs Frequency

• During long frequency scans, solid etalons introduce a power lose which has an effect on the observed intensity of the resonances.

Drifts on laser power affect on the intensities of the peaks \rightarrow I, μ , Q

ISOLFrance Workshop IV

Air-spaced etalon – Linewidth measurements

• Measure of the multimode Ti:sa linewidth using an FPI

Air-spaced etalon – Stability

• The frequency can be stabilized by adjusting the voltage of the piezo

Air-spaced etalon – Stability

- The frequency can be stabilized by adjusting the voltage of the piezo
- Power drift due to temperature increase

Air-spaced etalon – Hot cavity measurement

ISOLFrance Workshop IV

SFPI for wavelength measurement

- Objective: Reduce costs
- Explore the use of a Scanning FPI to perform accurate relative wavelength measurements
- Not possible to measure absolute wavelength

Movable Mirror

GISELE setup

SFPI scan measurements – Isotope shift

SFPI scan measurements – Large scans

- How to avoid limitations on the measurement range
- Steps limited to less than half of the FSR

- 1. All the resonances have the same wavelength, track one
- 2. Introduce limits on the scan
- 3. When the peak reaches the limit 'jump' to the next resonance
- 4. Correct by one FSR

Summary

Air-spaced etalon

- Outlook:
 - Development and characterization
 - Offline measurement of stable palladium
- Next step:
 - Online measurements

SFPI for relative wavelength measurements

- Outlook:
 - Development of the code
 - Offline measurement of stable tin and comparision with WS7
- Next step:
 - Improve accuracy on large scan ranges
 - Implement the code on GISELE's data acquisition system

Acknowledgement

Lucia Caceres, Herve Savajols, Iain Moore ,Nathalie Lecesne, Jekabs Romans, Vladimir Manea, Anjali Ajayakumar, Serge Franchoo, Wenling Dong, Sarina Geldhof, Mikael Reponen, Ruben de Groote & IGISOL group

laboratoire commun CEA/DRF