

Update of the FRIENDS³ project

FRIENDS³: Fast radioactive ion extraction and neutralization device for S³

Wenling Dong

IJCLab, Orsay, France March 10, 2022

ISOL-France Workshop 2022 - Wenling Dong

Outline

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

cnrs

Motivation

FRIENDS³ project objectives and methodology

Preliminary results

Motivation: the existing S³-LEB gas cell

PACULTÉ UNIVERSITE PARIS-SACLAY D'ORSAY

CORS

Radioactive ions to be studied by laser spectroscopy:

- stopped, thermalized and neutralized in the gas cell.
- extracted through a de Laval nozzle in a supersonic gas jet.
- ionized by the combined turnable pulsed lasers.

stopping volume solely relies on the gas flow.

≈ 250 ms

≈ 25 ms

Motivation: the existing S³-LEB gas cell

DES SCIENCES

≈ 25 ms ≈ 250 ms S³ beam ≈ 400 ms

Radioactive ions are extracted out of the stopping volume only relies on the gas flow.

Limitations:

- Long extraction time: ~ 500 ms.
- Current neutralization mechanism cannot work with electric field.

A fast gas cell with high-efficient neutralization techniques is necessary for short-lived S³ products with T_{1/2} in 100 ms range.

Objectives:

- Reduce the extraction time for nuclei with $T_{1/2} \sim 100$ ms.
- Efficient and fast neutralization mechanism for the gas cell.
- Maximize the ion extraction efficiency.

Objectives:

- Reduce the extraction time for nuclei with $T_{1/2} < 100$ ms.
- Efficient and fast neutralization mechanism for the gas cell.
- Maximize the ion extraction efficiency.

Idea:

Electrical field applied region (extraction time & efficiency improvement).

Two functional sections-

Long no-field region before the nozzle (ensure sufficient time for neutralization).

(CNTS)

Université de Par<u>is</u>

Multiphysics Simulation:

Fundamental effects due to the combined action of the electric fields and the gas flow:

Electric force + Collisions

CNrs

Université de Paris

Multiphysics Simulation:

Fundamental effects due to the combined action of the electric fields and the gas flow:

Simulate collisions one by one at high pressure is not possible for optimization.

Multiphysics Simulation:

Fundamental effects due to the combined action of the electric fields and the gas flow:

Simulate collisions one by one at high pressure is not possible for optimization.

© First stage optimization by COMSOL:

 $F_{combined} = F_E + F_{drag}$

- Electrostatics interface F_E .
- Effecitve user-defined Stokes type viscous damping force in laminar flow interface:

CNIS

$$F_{drag} = -m \cdot \delta \cdot (v - u) = -\frac{e}{k} (v - u) ,$$

ion mobility : $k = k_0 \frac{T/T_0}{P/P_0}$

Statistical modeling of diffusion effect by SIMION:

 $F_{combined} = F_E + F_{drag} + diffusion$

Preliminary design: a cylindrically symmetric gas cell.

FACULTÉ

OPSAY

DES SCIENCES

Preliminary design: a cylindrically symmetric gas cell.

 $F_E >> F_{drag}$, next step optimization: align the electric field with the desirable ion trajectory.

Irène Ioliot-Curie

Laboratoire de Physique des 2 Infinis

FACULTÉ DES SCIENCES

D'ORSAY

cnrs

UNIVERSITE PARIS-SACLAY W

 $F_E >> F_{drag}$, next step optimization: align the electric field with the desirable ion trajectory.

Trajectories of ¹³³Cs⁺ released at the same position:

cnrs

FACULTÉ DES SCIENCES

D'ORSAY

W

lons extraction and neutralization

FACULTÉ

OPSAY

DES SCIENCES

100 mbar mm (266 ms, 91.3 %) Efficiency (%) (295 ms, 76.7 %) 62 ms 98 ms Red: no-field tube Blue: outlet mm 'n Time (ms) Time available for neutralization (ms)

lons trajectories

Efficiency is much higher than reality since diffusion is not considered in COMSOL.

Performance of the designed gas cell

Coupling the diffusion effect.

Cross check with COMSOL.

 $F_{combined} = F_E + F_{drag} + diffusion$

W

DES SCIENCES

université

COMSOL/SIMION results comparison

Université de Paris

Laboratoire de Physique

- Calculations without diffusion gives similiar efficiencies.
- Diffusion significantly reduces the efficeincy.
- Extraction time almost identical between two softwares.

Electrons released in the tube:

Release at z=205 mm:

CNrs

FACULTÉ

OPSAY

DES SCIENCES

W

FRIENDS³ test bench

Laboratoire de Physique des 2 Infinis

An off-line simplified test bench:

- To study electron emission mechanisms, already ٠ done by filament heating. (beta source, electrical discharge will be tested)
- Beta source ionize the gas.

- Clear view of how to simulate and optimize the gas cell.
- Plasma module of COMSOL will be used to simulate the more precise electron generation/motion in the neutralization tube.
- A preliminary report is being writen with the first simulation results.
- Preperations for test bench have started.

FACULTÉ

université

DES SCIENCES

cnrs

W

cnrs

Université de Par<u>is</u>

Thank you for your attention !

Project team: Vladimir Manea^{1,2}, Serge Franchoo¹, David Lunney¹, Enrique Minaya -Ramirez¹, Samuel Roset¹, Wenling Dong¹

¹IJCLab CNRS-IN2P3, Orsay, France ²GANIL CEA-DSM/CNRS-IN2P3, Caen, France

Laboratoire de Physique des 2 Infinis

Overview: S³ physics

Particular interest of this project: Laser spectroscopy for short-lived S³-LEB products (in the 100 ms range) around the N = 82 shell closure up to the proton dripline.

Long-term expectation: short-lived isotopes at the region

- "beyond" N = Z
- near the N = Z = 50 shell closures.

https://u.ganil-spiral2.eu/chartbeams/ M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010)

Ъ

DES SCIENCES

Preliminary Results: COMSOL simulation

Preliminary design: a cylindrically symmetric gas cell.

COMSOL simulation results are studied by two steps:

- Stationary study of the gas flow.
- Time-dependent study of the particle motion.

Pressure (mbar) Velocity magnitude (m/s) ▲ 100.3 ▲ 27.2 25 100.2 20 IIII 100.1 15 100 10 99.9 5 99.8 ▼ 99.76 **V** 0

Gas properties at equilibrium state by laminar flow interface:

cnrs

COMSOL simulation of the gas flow

FACULTÉ
DES SCIENCES
PARIS-SACLAY
D'ORSAY

cnrs

Université de Paris

Gas properties at equilibrium state: stationary study by laminar flow interface (Mach number < 0.3) in COMSOL.

10/03/2022

ISOL-France Workshop 2022 - Wenling Dong

Feasibility of neutralization time improvement

Université de Paris

FACULTÉ DES SCIENCES

D'ORSAY

FACULTÉ

D'ORSAY

DES SCIENCES

Tube is segmented: avoid large voltage drop. Acceleration on a particle is normal to the contour.

RF funnel

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Université de Paris

Preliminary design: a cylindrically symmetric version gas cell.

cnrs

10/03/2022

Free electrons will be produced in the neutralization tube:

300 electrons released in Gaussian distribution at z = 195 mm in the tube of the optimized gas cell:

Release at z=205 mm:

FACULTÉ

OPSAY

DES SCIENCES

cnrs

W

Mesh size choosen for optimization

Velocity difference

universite PARIS-SACLAY

D'ORSAY

cnrs

FACULTÉ DES SCIENCES 4 Université de Paris

Laboratoire de Physique des 2 Infinis

