

Laboratoire de Biologie Cellulaire des Archées

Mineralization of iron-sulfides induced by Thermococcales

Aurore Gorlas

Archaea, the third domain of life

<u>3 main phyla</u>

Crenarchaeota Euryarchaeota Thaumarchaeota

Archaea, the third domain of life

Thermococcales

Pyrococcus, Thermococcus and Paleococcus

- Hyperthermophile
- Strictly anaerobe
- Mainly heterotroph
- Sulfur reducer
- Two types of metabolisms :
 S(0) respiration, fermentation

About 50 species described: <u>*T. prieurii*</u>: Gorlas et al., 2013a <u>*T. nautili*</u>: Gorlas et al., 2014

Observation of purified membrane vesicles and nanopods from Thermococcales (TEM and Cryo-EM)

Sulfur vesicles from *Thermococcales*: A possible role in sulfur detoxifying mechanisms

CrossMark

A. Gorlas a, *, E. Marguet a, S. Gill a, C. Geslin b, J.-M. Guigner C, F. Guyot C, P. Forterre a, d

S transported as polysulfides

Detoxification of polysulfides?

Cultures in Ravot medium without S(0) supplemented with L-cystine

(Gorlas et al., 2015)

Hydrothermal deep-sea vent : an extreme environment for life

Strong physico-chemical gradients Iron- and sulfur-rich systems FeS₂ pyrite formation (> 200°C) *Thermococcales :* major inhabitants of the hydrothermal sources

Hyperthermophile
 Strictly anaerobe

However at lower temperatures (< 150°C) FeS₂ are also produced by a still unknown mechanism which might involve the living compartments.

Does this hyperthermophilic (i.e. >80°C) biosphere contribute to the formation of iron-sulfide minerals ?

Rapid (<100 hours) formation of pyrites (FeS₂) replacing former cells and vesicles of Thermococcales

Thermococcus prieurii

85°C, Strict anoxia 144 hrs in Fe²⁺ mineralization medium

With presence of S(0)

SEM Image, scale bar : 1 micron

Gorlas et al., 2018 PlosOne

Fe₃S₄ (Fe(II)Fe(III)₂S₄) greigite mineralization

Nanocrystals of greigite

Where does Fe(III) come from?

Gorlas et al., 2018 PlosOne

SK

Iron phosphate discovered on cells debris

Iron (III) phosphate are the first solid phases formedat the contact of cells. Which mechanism for Fe(II) oxidation?5 hours mineralization24 hours mineralization48 hours mineralization

Are iron-sulfides formation linked to metabolism of Thermococcales ?

With presence of S(0)

Intracellular sulfurSulfur vesicles production

With presence L-cystine

 No traces of intracellular sulfur
 No production of SVs

With cystine instead of S(0) in the medium only Fe₃S₄ greigite. No pyrite

 $FeS \rightarrow Fe_3S_4$

Still requires oxidation

Metastable oxidation of Fe²⁺ by cystine, by other organic matter or by H⁺ ?

Gorlas et al. 2022 Env Microbiol

Mineralization in presence of S(0) or in presence of Lcystine

Sample	FeS %	amFePO₄ %	vivianite %	greigite* %	pyrite %	Sum	χ ² R 10-4	R _{factor} 10 ⁻⁵
Cystine_24h	86 (2)	11 (1)	8 (2)	-	-	105	11.3	9.5
Cystine_160h	78 (2)	8 (1)	16 (1)	-	-	102	3.7	3.3
Sulfur_24h	85 (2)	11 (2)	8 (2)		-	104	7.7	6.7
Sulfur_160h	11 (14)		-	41 (9)	49 (13)	101	21.2	19.9

S(0) acts as a precursor for pyrite formation on Thermococcales cells and vesicles

Thermococcales **metabolism** influences the production of iron-sulfide biominerals

Gorlas et al. 2022 Env Microbiol

ATPmetry analyses during biomineralization process

Massive mortality during initial encrustation in phosphate
 Phosphate and nutrients release and transformation to greigite and pyrite
 Some cells survive and multiply using lysed cell materials

Presence of living cells after long time experiments.

Model of the biomineralization mechanism

BIOMINERALIZATION Living cells Iron sulfides Fe(II) **EPS** loaded with minerals Fe(III)phosphates **Phosphates and** nutrients release Living and metabolically active cells Dying cells discharged their EPS Cells in latent state, not metabolically active Mineralized cells into FeS₂ pyrite Phosphates and nutrients available Fe₃S₄ greigite nanocrystals for growth

Project: Biosignatures of hyperthermophilic archaea

- Identify **biosignatures** of hyperthermophilic archaeon
- Mineralogical characterization

Aurore GORLAS Chloé TRUONG

é François IG GUYOT Sylvain BERNARD

- Experimental fossilization

- Rock samples observation

Project: Molecular mechanism of biomineralization

Characterization of the **molecular mechanism** involved in biomineralization process

- Iron related genes

Function		
Iron(III)-siderophore homolog		
Iron(II) transport protein B		
Iron(II) transport protein A		
Iron(II) transport protein B		
Iron(II) transport protein A		
Bacterioferritin homolog		
Ferritin-like protein		

MARIOTTE

- Role of membrane vesicles in biomineralization

Thank you for your attention

Some Conclusions

- In presence of *Thermococcales* strict anoxic oxidation of S²⁻ and Fe²⁺ occurs
- H⁺ is a possible candidate electron acceptor
- Fe(III) and polysulfides are formed
- Fe(III) phosphates and oxides precipitate
- Bioavailable phosphate is then released thanks to (poly)sulfide precipitation

Does this hyperthermophilic (i.e. >80°C) biosphere contribute significantly to the formation of minerals that build up the chimney and to the biogeochemistry of the hydrothermal system?

- Determine the **physiological and physico-chemical** conditions mimicking the fluctuating environment which **influence** and **control the rates of biominerals** produced by *Thermococcus kodakarensis*
- Explore the **molecular mechanism of biomineralization**, using the genetically tractable strain *Thermococcus kodakarensis* as model
- Identify the adaptive strategies employed by hyperthermophiles to cope with their harsh metal-rich high temperature environment.

www.anr.fr

First task _ Determine and analyze quantitatively the iron biominerals produced under different physico-chemical conditions mimicking the fluctuating environment of hydrothermal chimneys

• Determine the parameters which could influence the formation of iron sulfide minerals (Fe₃S₄, FeS₂, FeS), and iron phosphates in relation with the cells

T°C effects (from 80°C to 150°C)

pH effects (from 4.5 to 8) Continuous cultures

HT bioreactor

• Characterize and compare the biominerals formed when *T. kodakarensis* grows in other growth conditions

Sulfur respiration (H₂S production) VS Fermentation (H₂ production) Minimal medium can be use to mimic more closely the oligotrophic hydrothermal environment

Objectifs

Second task _ Understand the biomineralization mechanisms of *T. kodakarensis* at the genomic level

To date, no information is available about the relationships between production of biominerals and putative biomineralization related-genes in *Thermococcales*

• Identify all molecular partners involved in *Thermococcales* biomineralization mechanism (Transcriptomic experiments, Mutant strains..)

T. kodakarensis	Function	Comments	
genes			
ТК0707	Iron(III)-siderophore homolog		
ТК0714	Iron(II) transport protein B	Probably, two genes organized in	
TK0715	Iron(II) transport protein A	operon	
TK0957	Iron(II) transport protein B	Probably, two genes organized in	
ТК0958	Iron(II) transport protein A	operon	
TK1055	Bacterioferritin homolog		
TK1999	Ferritin-like protein		

 Determine the involvement of membrane vesicles in mineralization process Mutant strains deficient in MV production Mutant strains overproducing MVs

Objectifs

Third task _ Understand the role of biominerals at the ecological level

Abundant precipitation of minerals is deleterious to most cells but growth of non-mineralized and metabolically active cells in long time experiments of mineralization has been observed

- Identify the role of iron sulfide minerals on the nutriments in the hydrothermal medium Metabolomic experiments of the culture Metabolomic experiments of the biomineralizing media
- Investigate the relationships between two euryarchaeon in the reconstituted ecosystem Co-cultures of *T. kodakarensis* and *M. jannaschii* in bioreactor

Partenariats

Name	First name	Current position	Role & responsibilities in the project (4 lines max)	Involvement (person/month) throughout the project's total duration
GORLAS	Aurore	Assistant professor (MC CIN)	Coordinator and manager of the project, supervisor engineer and graduate student. Task 1, Task 2, Task 3	48
LORIEUX	Florence	Assistant engineer	Genetic constructs. Task 2	6
To be recruited by ANR		PhD student	Biomineralization, genetic constructs, molecular biology. Task 1, subtask 2.1	36
To be recruited by ANR		Technician	Bioreactor set up, Batch and Fed-Batch Thermococcales cultivation and co-cultures. Task 1, Task 3	12
To be recruited by ANR		Master student	Biomineralization, electron microscopy analyses and X- ray diffraction analyses. Task 1	6

Collaborations:

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC, Paris) with teams « Minéralogie environnementale » and « Biominéralogie »

TEM, SEM, Cryo-EM, XRD, EDXS, STEM-EDX, STEM-EELS facilities Synchrotron facilities through my collaboration with IMPMC (Dr Pierre Le Pape)

Institut Universitaire Européen de la Mer (IUEM, Plouzané) with team "Laboratoire de Microbiologie des Environnements Extrêmes"

Impacts espérés

By the multidisciplinary and experimental scientific aspects of the project, HYPERBIOMIN will generate interest in a large audience in microbiology, biogeochemistry, geology, astrobiology, bioremediation to cite the most obvious fields

- Submission of scientific manuscripts to publication in high-impact life sciences journals
- Presentation at international conferences such as Extremophiles 2022, and Goldschmidt Conference 2021 and 2022 and national meetings such as GdR Archaea 2022
- New courses and pedagogical projects about biomineralization and the use of biominerals in biotechnology

