

Evolution of beam screen surface conditioning upon particle irradiation for vacuum studies

Role played by surface chemistry on the Secondary Electron Yield

S. BILGEN – B. MERCIER – G. SATTONNAY

MAVERICS team – IJCLab / IN2P3/ CNRS January 18, 2022

DES SCIENCES

Université

Collaboration :

V. Baglin (CERN/Technological Department, Vacuum, Surfaces & Coatings Group)

ALICE

B1

VPS LHCb

B2

SPS ATLAS

Context :vacuum in the LHC

Vacuum studies constitute an essential field for all accelerator community, and high energy physics field.

Stimulated Desorption

Dynamic pressure in the LHC (Vacuum Pilot Sector Station 4)

All of these phenomena may limit the performance of the LHC : 13 TeV, 2556 b, 1.1x10¹¹ ppb

NOMINAL PARAMETERS LHC 14 TeV, 2808 b, 1.2x10¹¹ ppb

Main objectives

 \rightarrow Mitigation of detrimental collective effects inside the beam lines

ightarrow Influence of the surface chemistry on these phenomena + modification of the surface chemistry under e- irradiation

LHC beam screen samples

Oxygen-Free Electronic copper colaminated onto stainless steel.

OFE copper = 99.99% pure copper with 0.0005% oxygen content to avoid undesirable chemical reactions with other materials

5 mm

- high electric conductivity
- high thermal conductivity
- low outgassing rate
- non-magnetic material

dimensions: $5 \times 5 \times 2$ mm thick from the CERN's stock.

What is a "real surface"?

- investigated surfaces in accelerators are **technical surfaces** (and not pure Cu surfaces)

- there are always contaminants deposited on the surface + native oxide layers (Cu₂O et Cu(OH)₂)

role played by the C of the hydrocarbon molecules found on the surface of this beam screen ?
role played by the native oxides of the metal?

SEY measurements and conditioning in Vacuum and Surfaces platform at IJCLAB

- base pressure: 5x10⁻¹⁰ mbar
- pulsed electron beam
- energy range 10 to 1500 eV
- During measurement I= qques nA
- During conditioning: I=5 μA
- SEY error (about 10%), since elastically backscattered electrons can escape
- beam spot 2.8 mm in diameter during conditioning

Suheyla Bilgen PhD Thesis (IJCLab 2020)

Conditioning of copper beam screen using e- of 500 eV

Cu Beam Screen

E= 500 eV

 $\delta(E)$ decreases with increasing electron dose

in agreement with the literature e.g [R. Cimino et al J. of Electron Spectr. Related Phenomena, 2020]

Suheyla Bilgen PhD Thesis (IJCLab 2020)

 $\delta(E)$ decreases with increasing electron dose

in agreement with the literature e.g [R. Cimino et al J. of Electron Spectr. Related Phenomena, 2020]

Suheyla Bilgen PhD Thesis (IJCLab 2020)

XPS analysis to investigate the extreme surface (5-10 nm depth)

X-ray Photoelectron Spectroscopy

We are mainly interested in the chemical modifications of Cu, O and C induced by e- irradiation (main elements detected on the copper surface).

XPS

<u>Adventitious carbon (C-O, O-C=O) is removed by electron irradiation</u>: **Specific peaks associated with organic molecules on the surface, disappear after the surface cleaning by the e- bombardment.**

Modification of the **C hybridization** induced by electron irradiation: **Shift of the max of the peak towards low energies: signature of a modification of C chemical bonds:** from C-C bonds (sp3) to C=C bonds (sp2) \rightarrow in agreement with the literature [*R. Cimino et al, 2020*]

Nature of C present on the conditioned sample? TOF-SIMS analysis

XPS

MeV-Time Of Flight – Spectrometry – ANDROMEDE Platform

TOF-SIMS : a graphitic (graphene) carbon layer is formed on the surface of the fully conditioned sample (with a large amount of H).

XPS : Modification of the C hybridization : from C-C bonds (sp3) to C=C bonds (sp2) compatible with a graphite structure.

→ Carbon from organic compounds initially present on the surface is transformed into a graphite layer (0.5 nm) by e- irradiation.

Comparison of two unconditioned materials

ightarrow SEY of carbon is intrinsically lower than the beam screen one

 \rightarrow Carbon thin film deposited on Cu beam pipe walls is a solution to mitigate the electron cloud build up in the LHC [P. Pinto Costa, IPAC2014]

Why does the presence of a carbon layer reduces the SEY of the beam screen?

> Importance of surface chemistry analysis for a better understanding of dynamic pressure phenomena :

- *(i)* such as EC formation in accelerators
- (ii) And the evolution of these surfaces submitted to different type of irradiation
- > Finally we saw that the first few nm of a material has a major influence on surface properties such as the SEY
- All of these surface analysis are essential to investigate dynamic vacuum in accelerators and to improve colliders performances

> Perspectives R&D:

Study of the evolution of copper oxides under electron irradiation using **Andromede** Facility

- heat load is inhomogeneous along the ring

Giovanni Iadarola, CERN

E-CLOUD workshop 2018

Copper oxides a "hot topic" at CERN !

CuO was detected (and not the native oxide Cu₂O) in High Heat Load parts (high EC activity because more e- produced) !

CuO is responsible for the higher SEY observed on this sample (responsible for the high heat loads measured in some arcs) Where does CuO come from?? Hypothesis: Cu(OH)₂ could be transform into CuO under e- bombardment The influence of copper oxides on the conditioning is an important issue for the LHC

Thanks for your attention