

Analyze of meteorites and analogs by TOF-SIMS on Andromede

18/01/2022 Yann Arribard/Donia Balouti/ Rosario Brunetto

• Astophysical context

Non differentiated parent bodies:

Low chemical evolution

• Astophysical context

Astophysical context

Two families with distorted proportions due to extraction and hydrolysis

Characterize the primitive extraterrestrial organic matter *in situ* in the chondrites with different degree of hydration :

- \Rightarrow Understand the physico-chemical interactions between the organic and mineral phases.
- \Rightarrow Reconstruct the chemistry at the origin of the formation et the evolution of this organic matter.

• Methods

Spectroscopies (Reflectance I.R. et Raman) paired with the imaging

- Identification of chemical functions
- Characterization of hydration
- Characterization of the mineralogy

Spatial resolution = $5,5 \mu m$

complementarity

Study of the spatial distribution

TOF-SIMS (ION-TOF) paired with the imaging

- Chemical and structural characterization of organic and mineral
- Detection of organometallic molecules

Spatial resolution = $2 \mu m$

500 µm

• Methods

Use of Andromede with Au_{400}^{4+} primary ions (spatial resolution : 200 μ m)

 \Rightarrow Better ionization yields of high mass (m/z > 1000)

 \Rightarrow Detection of fragments of macromolecular organic matter

• Analyze of analogs for the understanding of the measurements and the optimization of the experimental setup

• Analogs

Mineral analogs

Natural silicate pellet :

- Phyllosilicates
- Anhydrous silicates

Pastille d'antigorite

Organic analogs

Films deposited on a substrate:

- Polypeptide
- Macromolecular analogs produced in laboratory

Silicates and organic matter mixed

• Analogs measurements

Counts normalized by Si⁺

- Antigorite $(Mg_3Si_2O_5(OH)_4)$ and Forsterite (Mg_2SiO_4) : positive mode

Forsterite

Measured on october 2021

• Analogs measurements

Antigorite $(Mg_3Si_2O_5(OH)_4)$ and Forsterite (Mg_2SiO_4) : negative mode

- Same mineral peaks between Antigorite and Forsterite
- Difference of relative intensities =>
 - some trace elements with different proportions (Na, Cr, K, Ca, F, Cl)
 - different pattern for the high mass oxide (K, Si, Ca or Mg)
- Numerous organic peaks
- Low mass resolution

• Analogs measurements

- Bradykinine on gold surface

- Presence of low mass organic peaks = fragments
- Presence of the molecular peak of bradykinine (m/z = 1060) and bradykinine + Na (m/z = 1083)

Measured on march 2019

• Analogs measurements

- Film CHON (Carbon + hydrogen + oxygen + nitrogen) on MgF₂ window :

- Presence of low mass organic peaks = fragments.
- Statistical distributions of peaks characteristic of a polymeric : intensity exploitable to m/z = 330-370)

Analogs measurements

- Antigorite with bradykinine or film CHON

- Increase of some signatures at low mass
- Molecular peak of bradykinine
- Signal/noise ratio lower :
 - infiltration of the bradykinine = dilution effect
 - ➢ ionization of the mineral of the pellet more efficient

- Increase of some signature at low mass in negative mode
- No signature of the polymeric structure of the film
 - ➢ infiltration of the bradykinine = dilution effect
 - ➢ ionization of the mineral of the pellet more efficient enlargement of all the peaks:
 - « matrix » effect film/antigorite

-

-

Topological effect: surface modification due to the deposit

Chondrites •

NWA 5515 CK4

Tuxtuac

¹³/₁₆

Paris CM2,7-2,9

Measured on october 2021

14

/16

• Chondrites measurements (preliminary results)

- Positive mode
- Low mass : mineral elements
- High mass : structural pattern of minerals (oxides et hydroxides)
- Low intensities: rim effects decreasing the detection of secondary ions

m/z

• Chondrites measurements (preliminary results)

- Négative mode
- Low mass: organic fragments, oxide of some minerals and salts anion (Cl⁻, F⁻...)
- High mass : structural pattern of minerals (oxides and hydroxides), but no high mass of organic matter

Measured on october 2021

• Plan for the future

Supplementary measurements needed :

- Chondrites measured on ION-TOF (Cold Bokkeveld and Paris) => comparison ION-TOF/Andromede
- Chondrites with 3D mold around the samples =>increase of the secondary ions collected
- News organic samples => Characterize them and increase the database of Andromede

Adaptation of the experimental setup:

- Addition of a reflector : increase of the mass resolution
- Addition of the imaging (camera + automatization)
- Addition of an electron canon : decrease of rim effect