Exploring the Higgs boson self-coupling at the LHC

Laboratoire de Physique des 2 Infinis

Luca Cadamuro

IJCLab, CNRS/IN2P3

IJCLab PHE Seminar March 7th, 2022

The scalar sector of the standard model

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Two main sectors of the SM:

- Gauge sector: electroweak and strong interactions explained with local gauge symmetries
- Scalar sector: complex scalar doublet of fields and potential with VEV $\neq 0$
 - spontaneous electroweak symmetry breaking (Brout-Englert-Higgs mechanism)
- The scalar sector is a necessary element of the SM
 - W[±] and Z bosons masses
 - fermions masses via Yukawa interactions
 - regularises the theory at the TeV scale

The scalar sector properties are determined by the shape of the scalar potential

The Higgs boson...

- Observed by ATLAS and CMS in 2012
- Mass precisely determined: $m_{\rm H} = 125.09 \pm 0.24 \, \text{GeV}$
- Precise study of its interactions with fermions and vector bosons...

- Observed by ATLAS and CMS in 2012
- Mass precisely determined: $m_{H} = 125.09 \pm 0.24 \text{ GeV}$
- Precise study of its interactions with fermions and vector bosons...
 - ... but self-interactions not measured experimentally!

$$V(H) = \frac{1}{2}m_{\rm H}^2 H^2 + \lambda_{\rm HHH} v H^3 + \frac{1}{4}\lambda_{\rm HHHH} H^4 - \frac{\lambda_{\rm HHHH}}{4}$$

$$\lambda_{\rm HHH} = \lambda_{\rm HHHH} = \lambda = \frac{m_{\rm H}^2}{2v^2} \approx 0.13$$

 λ_{HHH} : direct access to the shape of the scalar potential **Direct test of the EW symmetry breaking**

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

... and its self-coupling

The shape of the scalar potential is linked to many open questions of particle physics and cosmology

 $m_h = 124 \text{ GeV}$

- inflaton in the primordial Universe

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Why is it important?

 $m_h = 126 \text{ GeV}$

Higgs mass m_h in GeV

The modification of the shape of the scalar potential at high scales makes the EW vacuum metastable

The stability of the potential at high has an impact of the possible role of the Higgs boson as the

Luca Cadamuro

w how measure it?

\$ 0000

Η \$ 0000 Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron Figure 9.1.1 Some generic Feynman diagrams contributing to Higgs pair production at hadron Extract the value of λ_{HHH} from precision single H cross section measurements indirect measurement: stronger theory Sassumptions needed to disentangle NLO λΗΗΗ $\mp \sqrt{\text{ffects frem dther couplings / new physics/}}$ very rare process \implies experimentally the 2 the partonic Mandelstam variables. The triangular and box form with \hat{s} and \hat{t} denoting the partonic Mandelstam variables arge single H cross section with sactors flenoting the partonicach constant war one to the print of the second based init, factors F_{Δ} , F_{\Box} and G_{\Box} approach constant values in the infinite top quark mass limit.

H

The combination of both strategies maximises our sensitivity to λ_{HHH}

The Large Hadron Collider

Luca Cadamuro

- Design instantaneous luminosity exceeded throughout the Run 2 operations at $\sqrt{s} = 13$ TeV!
- Broad program of H and HH measurements with the ATLAS and CMS experiments

Exploring the Higgs boson self-coupling at the LHC

The CERN LHC is designed to deliver pp collisions at $\sqrt{s} = 14$ TeV and $\mathscr{L} = 10^{34}$ cm⁻² s⁻¹

HH production at the LHC

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Tiny cross section : experimentally very challenging!

8

Extracting AHHH from HH me and a standard of a standard of

March 7th, 2022

9

Illustration of shape effects

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Interference effects have important consequences for the sensitivity of the searches

HH : which decay channels?

- Phenomenologically rich set of final states
- Branching fraction and S/B largely vary across channels
- Common analysis techniques (e.g. $H \rightarrow bb$ reconstruction) and channel-specific challenges
- Broad study ongoing by the ATLAS and **CMS Collaborations**
 - many results with the full Run 2 dataset

A rich program of physics can be investigated with HH, including BSM searches (extended scalar sectors, extra dimensions, ...) with **resonant production** $(X \rightarrow HH)$ in a large m_X range up to few TeV.

A broad topic worth another seminar, not covered today

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

High \mathcal{B} , low S/B : HH \rightarrow bbbb

A HH→bbbb data event with high S/B selected in the 2016 dataset

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Most aboundant final state : ~1400 events expected in the Run 2 dataset

Four b-jet signature : large multijet background

March 7th, 2022

12

$HH \rightarrow bbbb : selecting the events$

Event selection

- Target fully resolved topology (4 jets)
- Events selected with ≥ 3 b jets (HLT + offline)
 - largely rely on b tag performance (ML based)

Event categorization

- HH production mode
- kinematics (low/high m_{HH}, SM- and BSM-like): max sensitivity to anomalous couplings

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

H candidates reconstruction

$HH \rightarrow bbbb : the multijet challenge$

Overwhelming multijet background

Powerful discriminants and data driven estimate Leverage on ML techniques to boost the analysis performance

Bkg. template from 3b uncorrected data

ML-based correction to bkg. template

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

- Background from 3b region
 - $3b \rightarrow 4b$ transfer function trained with BDT reweighting method in m_H control region
 - applied to data in the SR(3b) to model SR(4b)
 - accurate method verification in signal-free validation region
- Separate background from signal with a powerful multivariate discriminant

Obs. (exp.) : 3.9 (7.8) $\times \sigma_{HH}^{SM}$ Best single-channel constraint to date on SM HH

Medium \mathcal{B} , medium S/B : HH $\rightarrow bb\tau\tau$

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Three $\tau\tau$ final states

- $\tau_{\mu}\tau_{h}, \tau_{e}\tau_{h}, \tau_{h}\tau_{h}: 88\% \text{ of } \tau\tau \text{ decays}$
- Challenge of triggering for the fully hadronic final state
- Mass of the $\tau\tau$ system reconstructed with a likelihood method
 - used to suppress the backgrounds

Medium \mathcal{B} , medium S/B : HH $\rightarrow bb\tau\tau$

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

prompt from $\mathbf{t} \rightarrow \mathbf{b} \mathbf{W} \rightarrow \mathbf{b} \boldsymbol{\ell} \boldsymbol{\nu}$

Irreducible backgrounds

- tt \rightarrow bbWW \rightarrow bb $\tau\tau$
- di-boson, ZH (minor)
- \Box Z/ $\gamma^* \rightarrow \tau \tau + 2$ b jets

simulation

simulation + correction in Z→μμ

Instrumental (reducible) backgrounds

- \Box tt, Z/ γ^* , multijet with misidentified jets as τ_h or b jet
 - single top, W+jets (minor)

HH $\rightarrow bb\tau\tau$: signal extraction

- Sophisticated variables based on the kinematics are used to look for a signal
- Sensitivity lead by fully hadronic categories

Obs. (exp.) : 4.7 (3.9) × σ_{HH}SM

Luca Cadamuro

$\ell + \tau_h$ events

 $\tau_h + \tau_h$ events

Exploring the Higgs boson self-coupling at the LHC

Very rare but clean channel

Maximisation of acceptance and purity is essential

- Main backgrounds: $\gamma/\gamma\gamma$ + jets continuum, single H
- Dedicated MVAs for background suppression
 - Deep NN against ttH
 - BDT against nonresonant $\gamma(\gamma)$ + jet (uses object kinematics, ID, resolution)
- Event classification based on the MVA purity and the HH invariant mass
 - optimal acceptance and max sensitivity for anomalous κ_{λ}

Low \mathcal{B} , high S/B : HH $\rightarrow bb\gamma\gamma$

HH \rightarrow bb $\gamma\gamma$: signal extraction

Simultaneous fit with m_{bb} Obs. (Exp.) : 7.7 (5.2) × σ_{HH}SM

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Powerful signature from the $H \rightarrow \gamma \gamma$ decay used

to search for a signal

Sensitivity clearly dominated by the limited number of events

March 7th, 2022

Fit of $m_{\gamma\gamma}$ Obs. (Exp.) : 4.2 (5.7) × σ_{HH}SM

Summary of the full Run 2 results

- Impressive improvements compared to the previous round of results
 - much faster than luminosity! Larger datsets enable smarter analyses

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Excellent prospects for the Run 2 combination

Work ongoing to finalize all Run 2 analyses and update the combined results

Constraints on the self-coupling

$HH \rightarrow bb\gamma\gamma + HH \rightarrow bb\tau\tau$

 Observed:
 -1.0 < κ_{λ} < 6.6</th>

 Expected:
 -1.2 < κ_{λ} < 7.2</td>

In bbyy, similar constraint by CMS

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

$HH \rightarrow bbbb$

- Clear effect in the limit shape from m_{HH} variations vs κ_λ
- Interference effects limit the capability to constrain $\kappa_{\lambda} > 0$ values

 Observed:
 -2.3 < κ_{λ} < 9.4</th>

 Expected:
 -5.0 < κ_{λ} < 12.0</td>

Towards the Run 3

Expect a total dataset of ~400 fb⁻¹ (×2.5 current) after 3 years of Run 3

Explore more HH channels

rare but clean channels can be explored

Improve the HH analyses

- Capitalise on the Run 2 experience: new dedicated triggers, more advanced techniques
- A very rough estimation:
- Run 2 results: $2.5 3 \times SM / experiment$
- \Rightarrow ~2 × SM LHC Run 2 limit (1/sqrt(2) scaling)
- $\Rightarrow \sim 1 \times SM LHC Run 3 limit (1/sqrt(2.5) lumi scaling)$

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

With further improvements on the analyses: possibility of first LHC evidence for HH at Run 3?

t the LHC

March 7th, 2022

23

Searching for VBF HH → bbbb

One resolved analysis with dedicated VBF category

One boosted analysis targeting $p_T(H) > 400/500$ GeV

- dedicated ParticleNet discriminant D_{bb} to identify the bb candidates
- 3 purity categories based on D_{bb}
- m_{bb} reconstructed with DNN regression and used to define SR

Luca Cadamuro

Excellent separation at high *m*_{HH} leading to good S/B ratio

VBF HH at high m_{HH} : results

Observed: **0.6** < **K**₂**v** < **1.4**

Best sensitivity to SM production from resolved CMS analysis : 226 (412) × SM

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Single H measurements constrain K_V at the 5-10% \rightarrow the non observation of **VBF HH signal** implies that the **VVHH** interaction exists!

Interplay between κ_{2V} and κ_{V} related to the amplitude dependence

 κ_{λ}

HH as a probe of high energy BSM effects

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

- 5D parameter space, contact interactions, large kinematic modifications
 - probed with representative signal shape benchmarks
- EFT effects become more important as the experimental sensitivity approaches the SM

Full EFT fit as a next step

Exploring the Higgs boson self-coupling at the LHC

Luca Cadamuro

-
-
-
-
-
-
 _
 -
500

Extracting AHHH

- Reinterpretation of the simplified template cross section combined measurements
- Assume that all the other couplings are fixed to the SM prediction
- Variations of λ_{HHH} and of other couplings cannot be distinguished
 - reduced sensitivity by 50% if κ_V also fitted
 - no sensitivity if further degrees of freedom are introduced

Complements direct determination from HH

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

A global view of the self coupling

+ ttH (excl $ttH(\gamma\gamma)$)

Probe more generic models with all couplings variations

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

- H+HH: probe simultaneously λ_{HHH} and other couplings variations
- Remove degeneracies with Kt
- ~20% improvement in sensitivity to λ_{HHH} when adding single H

March 7th, 2022

LO (HH) with NLO (H) effects combined within a k-framework Not fully coherent theoretically \Rightarrow full EFT fit as a next step!

The high-luminosity LHC

- Upgrade of the LHC planned to start after the LS3
 - expect first beams in 2029

3 ab⁻¹ during a decade of operations

Unique possibility for very high precision Higgs physics Ultimate LHC sensitivity on HH

HH prospects at the HL-LHC

- HH sensitivity projected with Run 2 extrapolation and dedicated Phase-2 analyses
 - small impact of systematic uncertainties observed in most channels
- Expect 50% (100%) precision on κ_{λ} at 68% (95%) CL, and to exclude the no self-coupling hypothesis
 - with the current analysis techniques! Further improvements should come in the next 20 years
- New projections are in preparation (Snowmass)

Combination of channels and experiments is crucial to achieve sensitivity at the HL-LHC

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Why is it challenging?

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

High energy pp machines

Precision e+e- mack

- $\sqrt{s} \gtrsim 400 \text{ GeV}$ needed for HH production
 - only achievable in ILC500/1000 and CLIC_{1500/3000}

Small cross sections fc for the full run

VBF production interesting for $\sqrt{s} > 1$ TeV

Prospects for future sensitivities

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

March 7th, 2022

34

Conclusions

- The shape of the Higgs potential is so far largely unknown its measurement will deepen our understanding of the scalar sector
- HH measurements give direct access to λHHH
 - small cross section : experimentally challenging
 - crucial to explore and combine several decay channels
 - broad spectrum of analyses by ATLAS and CMS
- Sensitivity from single H measurements via NLO effects
 - need to disentangle λ_{HHH} from other effects of physics beyond the SM
 - benefit of a H + HH combination for maximal sensitivity
- Full Run 2 dataset under publication, and Run 3 close to start!
- Very good prospects for measurements at the HL-LHC with important experimental challenges to tackle
- λ_{HHH} is a key topic in the short and long term programme of current and future accelerators

Luca Cadamuro

A HH \rightarrow bb $\tau\tau$ event candidate in the CMS 2016 dataset

Additional material

Combination of the 2016 results

Approaching a sensitivity of $10 \times \sigma^{SM}$ with the 2016 dataset only

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

The combined results benefits from the similar sensitivity in several channels

Full Run 2 dataset (×4 more data) current under analysis ×2 more sensitive (from stat.) + analysis improvements

37

Self-coupling limits with the 2016 dataset

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Extrapolations: Same upgraded detector performance @ PU 200 as Run 2 **Detector** Phase-2 MC-based analyses: upgrades Fast or full sim with Phase 2 performance from TDRs Assume uncertainties halved w.r.t. current values Theory developments Syst. uncertainties: scaled with luminosity until "floor" levels Analysis methods: using today's Analysis ideas + future detector potentialities improvements

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Evaluating the prospects

Performance scenarios studied to bracket the future performance at the HL-LHC

Assumptions based on Run 2 experience

HH at future pp colliders

 σ_{HH} (100 TeV) = 1224 fb ×33 xs, ×10 lumi w.r.t HL-LHC

Benefit of the high energy and luminosity Clean channels and new topologies used to fight the PU

Luca Cadamuro

- Very rare channels and clean achieve good sensitivity
- bb $\gamma\gamma$, bb $\tau\tau$ leading the sensitivity because of the good purity
- FCC-hh Simulation (Delphes) Ge/ 200 Events/0.1 √s = 100 TeV $= 30 \ ab^{-1}$ 140 bbZZ(4 ℓ) 120 $\Delta \kappa_{\lambda} = 15-20\%$ 100 80 60 | 40⊢ 20 125 126 123 124 127
- For bbbb, use HH + jets
 - boosted jets easier to separate from the background
 - the centre-of-mass boost allows to maintain access to events close to the m_{HH} threshold

Exploring the Higgs boson self-coupling at the LHC

Luca Cadamuro

HH shape benchmarks

HH → bbbb : Higgs candidate reconstruction

- 4jet+3b trigger, offline preselection of the four jets with the highest b-tag score (\geq 3 b tagged)
- Three possible pairings of the four b jets exist \implies exploit the "equal-mass" hypothesis
 - \Box if $\Delta d = d_2 d_1 > 30$ GeV, select d_1 pair
 - otherwise, select between pairs d_1 and d_2 the one giving the highest $p_T(H)$ in the 4b rest frame
- Achieve correct pairing in 82-98% of events

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Optimal performance without biasing the bkg events

- ggF events split in low- and high-тнн (450) GeV) to capture κ_{λ} dependence
- VBF events split in SM-like and BSM-like based on BDT score to enhance anomalous κ_{2V} contribution

Luca Cadamuro

$HH \rightarrow bbbb : event categories$

- VBF events contain two additional jets with $\eta_1 \times \eta_2 < 0$
- A BDT is trained to separate misclassified ggF + 2 jets events
 - use kinematic properties of jet and H candidates
 - □ 97% of ggF events correctly classified

HH → bbbb : backgorund normalization

- Signal region (SR): $\chi < 25 \, \text{GeV}$
- Control region (CR): $25 < \chi < 50 \,\text{GeV}$
- Data are divided into a 3b and a 4b sample \Box 5-10× more data in 3b w.r.t. 4b
- Background yield = $N_{CR}^{4b}/N_{CR}^{3b} \times N_{SR}^{3b}$

Background yield determined from data

HH → bbbb : validation and uncertainties

- Signal-free validation region (VR) used
 - apply same methods as in the SR
 - VR shifted along the (m_{H1} , m_{H2}) diagonal \rightarrow no bias from H reconstruction
- Good statistical agreement for all variables observed in VR
 - add uncertainties for total yields non-closures (1.5-4.7%)
 - uncertainties for the validation vs analysis region statistics (3-30% for VBF cat.)
- Additional SR uncertainties considered on the background templates
 - bin-bin-bin template variations (poisson counts in 3b data)
 - CR statistical uncertainties
 - alternative bkg. templates from trainings in sub-portions of the CR

Good performance of bkg estimation method validated with data

Exploring the Higgs boson self-coupling at the LHC

March 7th, 2022

 m_{H1}

Shape benchmark results - 2016 combination

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

SINCLE COontribution Con

- Upper limit plot as function of c₂ from the $bb\gamma\gamma$ analysis
- Assumes that only c₂ is varied and other couplings are fixed to the SM value
- Under this assumption, observe $-0.6 < c_2 < 1.1$ (exp. $-0.4 < c_2 < 0.9$)
 - correlation with other couplings are expected to reduce the sensitivity

Target WW $\rightarrow \ell \nu \ell \nu \nu decays$

- tt irreducible background suppressed with DNN method
 - use kinematic information of the objects in the event: mass. p_T , angles
 - CMS uses a parametrised DNN for maximal sensitivity over κ_{λ}
- The ML discriminant used to look for a signal
 - ATLAS: counting exp. at high score
 - CMS: fit to the DNN distribution

Rare HH channels

Targets WW $\rightarrow \ell \nu qq$ decays

Look for a signal using the $m_{\gamma\gamma}$ spectrum

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

- Counting experiment in each region

- Resonant HH production predicted in a variety of models
 - from extended scalar sectors to exotic new physics
- complementarity of the different decay channels

muro (UF)

HH is an ideal place to look for BSM physics Sensitive with current LHC data

HH : experimental overview

A broad mass range must be covered to ensure maximal sensitivity to new physics

November 11th, 2020

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 36.1 - 79.8 fb ⁻¹ $m_H = 125.09$ GeV, $ y_H < 2.5$ $\rho_{SM} = 89\%$ Image: Total in the stat. Syst.	$zz = 0.86$ $zz = 0.63$ $B_{ZZ} = 0.86$ 0.86 $B_{ZZ} = 0.87$ 0.87	Total Stat. S + 0.14 + 0.12 + 0.12 + 0.12 + 0.12 + 0.12 + 0.12 + 0.12 + 0.12 + 0.13 + 0.13 + 0.13 + 0.18 + 0.13 + 0.18 + 0.13 + 0.16 + 0.11 + 0.29 + 0.22 + 0.22 + 0.24 + 0.22 + 0.24 + 0.19 + 0.22 + 0.24 + 0.19 + 0.24 + 0.19 + 0.24 + 0.19 + 0.24 + 0.19	Syst. 0.07 0.06) 0.27 0.22) 0.12 0.12 0.11) 0.19 0.14)	
$gg \rightarrow H, 0\text{-jet} \times B_{ZZ}$ $gg \rightarrow H, 1\text{-jet}, p_T^H < 60 \text{ GeV} \times B_{ZZ}$ $gg \rightarrow H, 1\text{-jet}, 60 \leq p_T^H < 120 \text{ GeV} \times B_{ZZ}$ $gg \rightarrow H, 1\text{-jet}, 120 \leq p_T^H < 200 \text{ GeV} \times B_{ZZ}$ $gg \rightarrow H, \geq 1\text{-jet}, p_T^H \geq 200 \text{ GeV} \times B_{ZZ}$ $gg \rightarrow H, \geq 2\text{-jet}, p_T^H < 200 \text{ GeV} \times B_{ZZ}$	1.29 0.57 0.87 1.30 2.05 1.17	$\begin{array}{c ccccc} Total & Stat. \\ +0.18 & +0.16 \\ -0.17 & (-0.15, \\ +0.43 & +0.37 \\ -0.41 & (-0.35, \\ +0.38 & +0.33 \\ -0.34 & (-0.31, \\ +0.81 & +0.71 \\ -0.72 & (-0.65, \\ +0.84 & +0.73 \\ -0.72 & (-0.64, \\ +0.56 & +0.46 \\ -0.51 & (-0.44, \\ \end{array}$	Syst. +0.09 -0.08) +0.23 -0.22) +0.18 -0.15) +0.39 -0.30) +0.43 -0.32) +0.32 -0.26)	Gluon fusion
$qq \rightarrow Hqq$, VBF topo + Rest × B_{ZZ} $qq \rightarrow Hqq$, VH topo × B_{ZZ} $qq \rightarrow Hqq$, $p_T^j \ge 200 \text{ GeV} \times B_{ZZ}$	 ■ ■	$7 \begin{array}{c} +0.45 \\ -0.38 \\ +1.35 \\ -1.13 \\ -1.13 \\ +1.34 \\ -1.48 \\ -1.29 \end{array}, \\ +1.31 \\ -1.11 \\ +1.31 \\ -1.29 \\ +1.34 \\ -1.29 \\ +1$	+0.27 -0.21) +0.32 -0.24) +0.69 -0.72)	VBF + VH (ha
$qq \rightarrow HIv, p_T^V < 250 \text{ GeV} \times B_{ZZ}$ $qq \rightarrow HIv, p_T^V \ge 250 \text{ GeV} \times B_{ZZ}$	1.9 ⁻ 1.9 ⁻	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+0.71 -0.55) +1.81 -0.66)	WH (lep)
$gg/qq \rightarrow HII, p_{T}^{V} < 150 \text{ GeV} \times B_{ZZ}$ $gg/qq \rightarrow HII, 150 \leq p_{T}^{V} < 250 \text{ GeV} \times B_{ZZ}$ $gg/qq \rightarrow HII, p_{T}^{V} \geq 250 \text{ GeV} \times B_{ZZ}$	• • • • 0.88 • • • • • • 0.86 • • • • • • • • • • • • • • • • • • •	$5 +1.26 +1.01 \\ -1.57 -0.98, +1.29 +1.02 \\ -1.13 -0.90, +3.03 +1.87 \\ -1.50 -1.33, +1.87 \\ -1.50 +1.33, +1.87 \\ -1.33, +1.87$	+0.76 -1.22) +0.79 -0.70) +2.38 -0.71)	ZH (lep)
$ttH + tH \times B_{ZZ}$ $-10 -5 0$	1.44 5 Parameter nor	4 +0.39 (+0.30 -0.33 (-0.27, 10 rmalized to SM	+0.24 -0.19) 15 value	ttH

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Single H: input

- Combination of single H measurements in various production modes and decay channels
- Fiducial Higgs boson production modes and kinematics phase space regions: "simplified template cross section"
- The impact of λ_{HHH} corrections is evaluated for each process and bin
 - \Box parametrise single H yields vs κ_{λ} , assume no relevant inter-bin changes w.r.t. SM
 - no differential effects available for ggF (expected small), single ttH bin \implies limited access to differential information

ad)

52

Single Higgs effects from λ_{HHH}

Cross section

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Branching fraction

H + HH : expected results

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

Model	$\kappa_{W^{+1}\sigma}_{-1\sigma}$	$\kappa_{Z-1\sigma}^{+1\sigma}$	$\kappa_t {}^{+1\sigma}_{-1\sigma}$	$\kappa_b {}^{+1\sigma}_{-1\sigma}$	$\kappa_{\ell}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda - 1\sigma}^{+1\sigma}$	<i>к</i> _λ [95% CL]	
Generic	$1.03^{+0.08}_{-0.08}$	$1.10^{+0.09}_{-0.09}$	$1.00^{+0.12}_{-0.11}$	$1.03^{+0.20}_{-0.18}$	$1.06^{+0.16}_{-0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5]	obs.
Ucherie	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.21}_{-0.19}$	$1.00^{+0.16}_{-0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6]	exp.

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

- The combination of H and HH allows to retain sensitivity to κ_{λ} even when introducing additional degrees of freedom: HH needed to solve the degeneracy with other couplings
- The best-fit values for all the couplings are compatible with the SM prediction

H + HH : input comparison

Luca Cadamuro

- HH drives the sensitivity
- ggF is the most sensitive single H production mode
 - sensitivity from total cross-section
- ttH not sensitive for $\kappa_{\lambda} > 0$ because of the degeneracy (second minimum) in the cross-section

Exploring the Higgs boson self-coupling at the LHC

Using the differential information in single H

- ttH: from the observation to fully differential information at the HL-LHC
- The differential spectrum encodes information on κ_{λ} \rightarrow retains sensitivity also if μ_{ttH} is left floating
- Goal: extract the best sensitivity from a H + HH combination

Luca Cadamuro

Exploring the Higgs boson self-coupling at the LHC

57

Single H future prospects at the HL-LHC

- Extrapolation of the current measurements to 3 ab⁻¹
 - under assumptions on the evolution of the systematic uncertainties and detector performance
- Most couplings known at a precision of 2-4%!
 - with theory uncertainties as the dominant ones
 - stat. uncertainties remaining relevant for very rare processes

The HL-LHC view of AHHH

- HH driving the sensitivity on κ_{λ} at the HL-LHC
- Large differences from single Higgs measurements assuming κ_{λ} -only variations or globally fitting all coupling modifications

How about HHH?

Depends also on trilinear coupling

Both high energy and high luminosity needed

 $\Box \sqrt{s} = 100 \text{ TeV}, 30 \text{ ab}^{-1} (FCC)$

- Many possible final states!
 - Most interesting ones: bb bb bb (19.2%), bb bb $\tau\tau$ (6.3%), bb bb WW_{2l} (0.98%), bb $\tau\tau$ $\tau\tau$ (0.69%), bb bb $\gamma\gamma$ (0.23%), bb $\tau\tau$ WW_{2l} (0.21%)
- Performance crucially depends on detector performance! (many final state objects)
 - □ need also forward coverage up to $|\eta| \approx 3.5$
- Sensitivity: at FCC, O(100%) precision on σ_{HHH} , $\lambda_{HHHH} \in [-4, +16]$

Luca Cadamuro

, h			
	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
	$73.43^{+14.7\%}_{-13.7\%}\pm3.3\%$	$86.84^{+14.0\%}_{-13.2\%}\pm3.2\%$	$4732^{+11.9\%}_{-11.6\%} \pm 1.8\%$
$15.14^{+18.4\%}_{-16.0\%} \pm 4.7\%$	$63.32^{+16.1\%}_{-14.1\%}\pm3.4\%$	$76.15^{+15.9\%}_{-14.0\%}\pm3.2\%$	$4306^{+14.0\%}_{-12.3\%} \pm 1.8\%$

aptobarn!

